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Abstract
This paper reviews recent advances and current debates in modeling the solar cycle

as a hydromagnetic dynamo process. Emphasis is placed on (relatively) simple

dynamo models that are nonetheless detailed enough to be comparable to solar cycle

observations. After a brief overview of the dynamo problem and of key observa-

tional constraints, I begin by reviewing the various magnetic field regeneration

mechanisms that have been proposed in the solar context. I move on to a presen-

tation and critical discussion of extant solar cycle models based on these mecha-

nisms, followed by a discussion of recent magnetohydrodynamical simulations of

solar convection generating solar-like large-scale magnetic cycles. I then turn to the

origin and consequences of fluctuations in these models and simulations, including

amplitude and parity modulation, chaotic behavior, and intermittency. The paper

concludes with a discussion of our current state of ignorance regarding various key

questions relating to the explanatory framework offered by dynamo models of the

solar cycle.
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1 Introduction

1.1 Scope of review

The cyclic regeneration of the Sun’s large-scale magnetic field is at the root of all

phenomena collectively known as ‘‘solar activity’’. A near-consensus now exists to

the effect that this magnetic cycle is to be ascribed to the inductive action of fluid

motions pervading the solar interior. However, at this writing nothing resembling

consensus exists regarding the detailed nature and relative importance of various

possible inductive flow contributions.

My assigned task, to review ‘‘dynamo models of the solar cycle’’, is daunting. I

will therefore interpret this task as narrowly as I can get away with. This review will

not discuss in any detail solar magnetic field observations, the physics of magnetic

flux tubes and ropes, the generation of small-scale magnetic field in the Sun’s near-

surface layers, solar cycle prediction, or magnetic field generation in stars other than
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the Sun. These topics do have a lot to bear on ‘‘dynamo models of the solar cycle’’,

but a line needs to be drawn somewhere, and moreover many of these topics are the

subject of full length reviews in this journal: Hathaway (2015) and Usoskin (2017)

on characteristics of the observed and reconstructed solar cycle, Stein (2012) on

photospheric magnetoconvection, Brun and Browning (2017) on stellar magnetism

and cycles, Fan (2009) and Cheung and Isobe (2014) on magnetic flux emergence,

and Petrovay (2020) on solar cycle predictions.

This review thus focuses on the cyclic regeneration of the large-scale solar

magnetic field through the inductive action of fluid flows, as described by various

approximations and simplifications of the partial differential equations of magne-

tohydrodynamics. Most current dynamo models of the solar cycle rely heavily on

numerical solutions of these equations, and this computational emphasis is reflected

throughout the following pages.

Many of the mathematical and physical intricacies associated with the generation

of magnetic fields in electrically conducting astrophysical fluids are well covered in

a few existing reviews and textbooks (see Ossendrijver 2003; Brandenburg and

Subramanian 2005; Charbonneau 2013; Schrijver and Siscoe 2009; Moffatt and

Dormy 2019), and will not be addressed at depth in what follows. The focus is on

models of the solar cycle, seeking primarily to describe the observed spatio-

temporal variations of the Sun’s large-scale magnetic field.

1.2 What is a ‘‘model’’?

The review’s very title demands an explanation of what is to be understood by

‘‘model’’. A model is a theoretical construct used as thinking aid in the study of

some physical system too complex to be understood by direct inferences from

observed data. A model is usually designed with some specific scientific questions

in mind, and asking different questions about a given physical system will, in all

legitimacy, lead to distinct model designs. A well-designed model should be as

complex as it needs to be to answer the questions having motivated its inception, but

not more. Throwing everything into a model—usually in the name of ‘‘physical

realism’’—is likely to produce results as complicated as the data coming from the

original physical system under study. Such model results are doubly damned, as

they are usually as opaque as the original physical data, and, in addition, are not

even real-world systems!

Nearly all of the solar dynamo models discussed in this review rely on severe

geometrical and/or dynamical simplifications of the set of equations known to

govern the dynamics of the Sun’s turbulent, magnetized fluid interior. Yet all of

them are bona fide models, as defined here. Global magnetohydrodynamical

simulations of convection and dynamo action are also models, but in a different

sense; while geometrically and dynamically correct on all resolved scales, they

typically operate in physical parameter regimes far removed from solar interior

conditions. Moreover, computational limitations usually force truncation, some-

times severe, of the spatial and temporal scales captured by these simulations.
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1.3 A brief historical survey

While regular observations of sunspots go back to the early seventeenth century,

and discovery of the sunspot cycle to 1843, it is the landmark work of George Ellery

Hale and collaborators that, in the opening decades of the twentieth century,

demonstrated the magnetic nature of sunspots and of the solar activity cycle. In

particular, Hale’s celebrated polarity laws established the existence of a well-

organized magnetic flux system, residing somewhere in the solar interior, as the

source of sunspots. In 1919, Joseph Larmor suggested the inductive action of fluid

motions as one of a few possible explanations for the origin of this magnetic field,

thus opening the path to contemporary solar cycle modelling. Larmor’s suggestion

fitted nicely with Hale’s polarity laws, in that the inferred equatorial antisymmetry

of the solar internal toroidal fields is precisely what one would expect from the

shearing of a large-scale poloidal magnetic field by an axisymmetric and

equatorially symmetric differential rotation pervading the solar interior. However,

two decades later Thomas S. Cowling placed a major hurdle in Larmor’s path—so

to speak—by demonstrating that even the most general purely axisymmetric flows

could not, in themselves, sustain an axisymmetric magnetic field against Ohmic

dissipation. This result became known as Cowling’s antidynamo theorem.

A viable way out of this quandary was only discovered in the mid-1950s, when

Eugene N. Parker pointed out that the Coriolis force could impart a systematic

cyclonic twist to rising turbulent fluid elements in the solar convection zone, and in

doing so provide the break of axisymmetry needed to circumvent Cowling’s

theorem. This groundbreaking idea was put on firm quantitative footing by the

subsequent development of mean-field electrodynamics in the 1960s, which rapidly

became the theory of choice for solar dynamo modelling. By the late 1970s,

concensus had almost emerged as to the fundamental nature of the solar dynamo,

and the a-effect of mean-field electrodynamics was at the heart of it.

Serious trouble soon appeared on the horizon, however, and from no less than

three distinct directions. First, it was realized that because of buoyancy effects,

magnetic fields strong enough to produce sunspots could not be stored in the solar

convection zone for sufficient lengths of time to ensure adequate amplification.

Second, the ability of the a-effect and turbulent magnetic diffusivity to operate as

assumed in mean-field electrodynamics was also called into question by theoretical

calculations and numerical simulations. Third, and perhaps most decisive, the

nascent field of helioseismology succeeded in providing the first determinations of

the solar internal differential rotation, which turned out markedly different from

those needed to produce solar-like dynamo solutions in the context of mean-field

electrodynamics.

It is fair to say that even at this writing solar dynamo modelling has not yet

recovered from this three-way punch, in that nothing resembling concensus

currently exists as to the mode of operation of the solar dynamo. As with all major

scientific crises, this situation provided impetus not only to drastically redesign

existing models based on mean-field electrodynamics, but also to explore new

physical mechanisms for magnetic field generation, and resuscitate older ideas that

had fallen by the wayside in the wake of the a-effect—perhaps most notably the so-
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called Babcock–Leighton mechanism, dating back to the early 1960s and relying on

photospheric dispersal of magnetic flux from decaying active regions. These post-

helioseismic developments, beginning in the mid to late 1980s, are the primary

focus of this review.

1.4 Sunspots and the butterfly diagram

The sunspot cycle is arguably the best known manifestation of the solar magnetic

cycle. Figure 1 shows time series for three declinations of the international sunspot

numbers (SSN): monthly average (orange), 13-month smoothed monthly average

(red), and prior to 1749, yearly average. The average sunspot cycle period is

11 years, but Hale’s polarity Laws reveal an underlying magnetic cycle of twice that
period. Reproducing the polarity reversals and decadal period of the solar magnetic

cycle is the first order of business for any dynamo model of the solar cycle.

Next to cyclic polarity reversal, the sunspot butterfly diagram has provided the

most stringent observational constraints on solar dynamo models (see Fig. 2). In

addition to the obvious cyclic pattern, three features of the diagram are particularly

noteworthy:

• Sunspots are restricted to latitudinal bands some ’ 30� wide, symmetric about

the equator.

• Sunspots emerge closer and closer to the equator in the course of a cycle,

peaking in coverage at about � 15� of latitude.

• Spatiotemporal variations of sunspot coverage are well synchronized across the

two solar hemispheres

Sunspots appear when deep-seated toroidal flux ropes rise through the convective

envelope and emerge at the photosphere (Parker 1955, 1975). Assuming that they

rise radially and are formed where the magnetic field is the strongest, the sunspot

butterfly diagram can be interpreted as a spatio-temporal ‘‘map’’ of the Sun’s

internal, large-scale toroidal magnetic field component. This interpretation is not

unique, however, since the aforementioned assumptions may be questioned. In

particular, we still lack quantitative understanding of the process through which the

diffuse, large-scale solar magnetic field produces the concentrated toroidal flux

ropes that will later, upon buoyant destabilisation, give rise to sunspots. This

remains perhaps the most severe missing link between dynamo models and solar

magnetic field observations. On the other hand, the stability and rise of toroidal flux

ropes is now fairly well-understood (see, e.g., Fan 2009, and references therein).

Magnetographic mapping of the Sun’s surface magnetic field (see Fig. 3) has also

revealed that the Sun’s poloidal magnetic component undergoes cyclic variations,

reversing polarity at times of sunspot maximum. Note on Fig. 3 the poleward drift

of the surface fields, away from sunspot latitudes. This pattern is believed to

originate from the transport of magnetic flux released by the decay of sunspots at

low latitudes (see Petrovay and Szakály 1999; Ulrich and Tran 2013, for

alternate viewpoints).
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The surface polar cap flux amounts to about 1022 Mx, while the total unsigned

flux emerging in active regions in the course of a typical cycle adds up to a few

1025 Mx; this is usually taken to indicate that on large spatial scales the solar

internal magnetic field is dominated by its toroidal (zonal) component.

(A)

(B)

Fig. 1 a The time series of the Version 2.0 international sunspot number (SSN), plotted here as monthly
averages (orange), 13-month smoothed monthly average (red), and yearly average for 1700–1749 (red
dots). The Group Sunspot Number of Hoyt and Schatten (1998), scaled to match the yearly average SSN
in 1700–1749, is also shown in blue, allowing to extend the record back to 1610 (see also Chatzistergos
et al. 2017). Panel b focuses on the last four sunspot cycles, and includes time series for the smoothed
monthly hemispheric sunspot number, as color coded. Sunspot cycle numbering conventionally begins at
one with the 1755–1766 cycle. Data source: WDC-SILSO, Royal Observatory of Belgium, Brussels

Fig. 2 The sunspot ‘‘butterfly diagram’’, showing the fractional coverage of sunspots as a function of
solar latitude and time (courtesy of D. Hathaway, Solar Cycle Science; see http://www.solarcyclescience.
com/solarcycle.html)
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1.5 Organization of review

The remainder of this review is organized in seven sections. In Sect. 2 the

mathematical formulation of the solar dynamo problem is laid out in some detail,

together with the various simplifications that are commonly used in modelling.

Section 3 details various pertinent physical mechanisms of magnetic field gener-

ation. In Sect. 4, a selection of representative models relying on turbulent induction

are presented and critically discussed, with abundant references to the technical

literature. Section 5 focuses on models based on the Babcock–Leighton mechanism

of polar field reversal, while Sect. 6 covers global magnetohydrodynamical

simulations, with emphasis on simulations producing large-scale magnetic cycles.

Section 7 surveys the various physical mechanisms that can lead to fluctuations in

the characteristics of magnetic cycles, with pointers to illustrative model results and

reviewing the recent literature on the topic. The concluding Sect. 8 offers a

somewhat more personal discussion of current challenges and trends in solar

dynamo modelling.

A great many review papers have been and continue to be written on dynamo

models of the solar cycle, and the solar dynamo is discussed in most recent solar

physics textbooks, notably Stix (2004), Foukal (2004) and Schrijver and Siscoe (2009).

The series of review articles published in Balogh et al. (2014) are also essential reading

for more in-depth coverage of some of the topics covered here. Among older review

papers, Petrovay (2000), Rüdiger and Arlt (2003), Ossendrijver (2003) and Branden-

burg and Subramanian (2005) offer (in my opinion) particularly noteworthy alternate

and/or complementary viewpoints to those expressed here.

2 Making a solar dynamo model

2.1 Magnetized fluids and the MHD induction equation

In the interiors of the Sun and most stars, the collisional mean-free path of

microscopic constituents is much shorter than competing plasma length scales, fluid

Fig. 3 Zonally-averaged time–latitude magnetogram of the radial component of the solar surface
magnetic field. The low-latitude component is associated with sunspots. Note the polarity reversal of the
high-latitude magnetic field, occurring approximately at time of sunspot maximum (courtesy of
D. Hathaway, Solar Cycle Science; see http://www.solarcyclescience.com/solarcycle.html)
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motions are non-relativistic, and the plasma is electrically neutral and non-

degenerate. Under these physical conditions, Ohm’s law holds, and so does

Ampère’s law in its pre-Maxwellian form. Maxwell’s equations can then be

combined into a single evolution equation for the magnetic field B, known as the

magnetohydrodynamical (MHD) induction equation (see, e.g., Davidson 2001):

oB

ot
¼ r� ðu� B� gr� BÞ; ð1Þ

where g ¼ c2=4pre is the magnetic diffusivity (re being the electrical conductivity),
in general only a function of depth for spherically symmetric solar/stellar structural

models. The magnetic field must satisfy r � B ¼ 0, and an evolution equation for

the flow field u must also be provided. This is the Navier–Stokes equations, aug-

mented by the Lorentz force:

ou

ot
þ ðu � rÞu ¼ � 1

q
rpþ gþ 1

4pq
ðr � BÞ � B� 2X�uþ 1

q
r � s; ð2Þ

where s is the viscous stress tensor, and other symbols have their usual meaning.1 In

the most general circumstances, Eqs. (1) and (2) must be complemented by suit-

able equations expressing conservation of mass and energy, as well as an equation

of state. The resulting set of equations defines magnetohydrodynamics, quite lit-

erally the dynamics of magnetized fluids.

Even though Eq. (1) looks (misleadingly) linear in B, the dynamo process is

fundamentally nonlinear. Upon taking the scalar product of Eq. (1) with B and

integrating over the volume V within which the dynamo is operating, one can arrive

at the following evolution equation for the total magnetic energy within the system:

d

dt

Z
V

B2

8p
dV ¼ �

I
oV

S � n dA� 1

re

Z
V

J2 dV � 1

c

Z
V

u � ðJ � BÞ dV ð3Þ

where S is the Poynting flux; the associated first term on the RHS vanishes for

isolated systems (such as a star imbedded in vaccum) and is of no further concern

here. The second captures Ohmic dissipation of the electrical currents supporting

the magnetic field, and will always decrease magnetic energy except in the ideal

MHD limit re ! 1. The third term on the RHS is where dynamo action resides.

With the flow u looked upon as the displacement of a fluid element per unit time,

this term indicates that an increase of magnetic energy can only occur if the flow

does work against the Lorentz force. This conversion of mechanical energy into

electromagnetic energy is the very essence of any dynamo mechanism, from

Faraday’s simple homopolar generator to astrophysical dynamos.

2.2 The dynamo problem

The first term on right hand side of Eq. (1) represents the inductive action of the

flow field u, and it can act as a source term for B; the second term, on the other

1 Equation (2) is written here in a frame of reference rotating with angular velocity X, so that a Coriolis

force term appears explicitly, while the centrifugal force has been subsumed into the pressure term.

123

Dynamo models of the solar cycle Page 9 of 104 4



hand, describes the resistive dissipation of the current systems supporting the

magnetic field, and is thus always a global sink for B. The relative importances of

these two terms is measured by the magnetic Reynolds number

Rm ¼ uL

g
; ð4Þ

obtained by dimensional analysis of Eq. (1). Here g, u, and L are ‘‘typical’’

numerical values for the magnetic diffusivity, flow speed, and length scale over

which B varies significantly. The latter, in particular, is not easy to estimate a priori,

as even laminar MHD flows have a nasty habit of generating their own magnetic

length scales (usually / Rm�1=2 at high Rm). Nonetheless, on length scales com-

parable to the sun itself, Rm is immense, and so is the usual viscous Reynolds

number Re ¼ uL=m. This implies that energy dissipation will occur on length scales

very much smaller than the solar radius.

The dynamo problem consists in finding/producing a (dynamically consistent)

flow field u that has inductive properties capable of sustaining B against Ohmic

dissipation. Ultimately, the amplification of B occurs by shearing, compression, and
transport of the pre-existing magnetic field by the flow. This is readily seen upon

rewriting the inductive term in Eq. (1) as

r� ðu� BÞ ¼ ðB � rÞu|fflfflfflfflffl{zfflfflfflfflffl}
shearing

�Bðr � uÞ|fflfflfflfflffl{zfflfflfflfflffl}
compression

�ðu � rÞB|fflfflfflfflffl{zfflfflfflfflffl}
transport

ð5Þ

In itself, the first term on the right hand side of this expression can obviously lead to

exponential amplification of the magnetic field, at a rate proportional to the local

flow gradient.

In the solar cycle context, the dynamo problem is reformulated towards

identifying the circumstances under which the flow fields observed and/or inferred

in the Sun can sustain the cyclic regeneration of the magnetic field associated with

the observed solar cycle. This involves more than merely sustaining the field. A

model of the solar dynamo should also reproduce

• cyclic polarity reversals with a decadal half-period,

• equatorward migration of the sunspot-generating deep toroidal field and its

inferred strength,

• poleward migration of the diffuse surface field,

• observed p=2 phase lag between poloidal and toroidal components,

• polar field strength,

• observed antisymmetric equatorial parity,

• predominantly negative (positive) magnetic helicity in the Northern (Southern)

solar hemisphere.

At the next level of ‘‘sophistication’’, a solar dynamo model should also be able to

exhibit amplitude fluctuations, and reproduce (at least qualitatively) the empirical

patterns and correlations extracted from the sunspot and proxy records, including

the so-called Grand Minima, during which the cycle amplitude –and perhaps the
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cycle itself– is strongly suppressed over many cycle periods (more on this in Sect. 7

below). One should finally add to the list torsional oscillations in the convective

envelope, with proper amplitude and phasing with respect to the magnetic cycle.

This is a very tall order by any standard.

Because of the great disparity of time- and length scales involved, and the fact

that the outer 30% in radius of the Sun are the seat of vigorous, thermally-driven

turbulent convective fluid motions, the solar dynamo problem is very hard to tackle

as a direct numerical simulation of the full set of MHD equations (but do see Sect. 6

below). Most solar dynamo modelling work has thus relied on simplification—

usually drastic—of the MHD equations, as well as assumptions on the structure of

the Sun’s magnetic field and internal flows.

2.3 Kinematic models

A first drastic simplification of the MHD system of equations consists in dropping

Eq. (2) altogether by specifying a priori the form of the flow field u. This kinematic
regime remained until relatively recently the workhorse of solar dynamo modelling.

Note that with u given, the MHD induction equation becomes truly linear in B.
Helioseismology (Christensen-Dalsgaard 2002) has now pinned down with good

accuracy two important solar large-scale flow components, namely differential

rotation throughout the interior, and meridional circulation in the outer half of the

solar convection zone (for reviews, see Gizon 2004; Howe 2009). Given the low

amplitude of observed torsional oscillations in the solar convective envelope, the

kinematic approximation is perhaps not as bad a working assumption as one may

have thought, at least for the differential rotation contribution to the mean flow u.

2.4 Axisymmetric formulation

The sunspot butterfly diagram, Hale’s polarity law, synoptic magnetograms, and the

shape of the solar corona at and around solar activity minimum jointly suggest that,

to a tolerably good first approximation, the large-scale solar magnetic field is

axisymmetric about the Sun’s rotation axis, as well as antisymmetric about the

equatorial plane. Under these circumstances it is convenient to express the large-

scale field as the sum of a toroidal (i.e., longitudinal) component and a poloidal

component (i.e., contained in meridional planes), the latter being expressed in terms

of a toroidal vector potential. Working in spherical polar coordinates ðr; h;/Þ, one
writes

Bðr; h; tÞ ¼ r � ðAðr; h; tÞê/Þ þ Bðr; h; tÞê/: ð6Þ

Such a decomposition automatically satisfies r � B ¼ 0. Likewise, the (steady)

large-scale flow field u is written as the sum of an axisymmetric azimuthal com-

ponent (differential rotation), and an axisymmetric ‘‘poloidal’’ component up
(� urðr; hÞêr þ uhðr; hÞêh), i.e., a flow confined to meridional planes:

uðr; hÞ ¼ upðr; hÞ þ -Xðr; hÞê/; ð7Þ
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where - ¼ r sin h and X is the angular velocity (rad s�1). Substitution of (6) and (7)

into the MHD induction equation (1) yields two separate (but coupled) evolution

equations for A and B:

oA

ot
¼ g r2 � 1

-2

� �
A

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
resistive decay

� up
-

� rð-AÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
transport

; ð8Þ

oB

ot
¼ g r2 � 1

-2

� �
Bþ 1

-
oð-BÞ
or

og
or|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

resistive decay

� -up � r
B

-

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

transport

� Br � up|fflfflfflffl{zfflfflfflffl}
compression

þ-ðr � ðAê/ÞÞ � rX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
shearing

:

ð9Þ

where in anticipation of later developments, the magnetic diffusivity may depend on

radius inside the Sun.

Augmented with suitable additional source terms, Eqs. (8)–(9) will become our

model axisymmetric dynamo equations. They are to be solved in a meridional plane,

i.e., Ri � r�R	 and 0� h� p, with regularity of the solutions requiring that A ¼ 0

and B ¼ 0 on the symmetry axis. It is usually assumed that the deep radiative

interior can be treated as a perfect conductor, so that one sets A ¼ 0 and oðrBÞ=or ¼
0 at some depth Ri chosen deeper than the lowest extent of the region where dynamo

action is taking place. It is usually assumed that the Sun/star is surrounded by a

vacuum, in which no electrical currents can flow, i.e., r� B ¼ 0; such an

axisymmetric potential field, expressed via Eq. (6), then requires

r2 � 1

-2

� �
A ¼ 0; B ¼ 0; r=R	 [ 1; ð10Þ

Formulated in this manner, the dynamo solution spontaneously ‘‘picks’’ its own

parity, i.e., its symmetry with respect to the equatorial plane. Alternately, one may

solve only in a meridional quadrant (0� h� p=2) and impose equatorial parity via

the boundary condition at the equatorial plane (h ¼ p=2):

oA

oh
¼ 0; B ¼ 0 ! antisymmetric; ð11Þ

A ¼ 0;
oB

oh
¼ 0 ! symmetric: ð12Þ

3 Mechanisms of magnetic field generation

The Sun’s poloidal magnetic component, as measured on photospheric magne-

tograms, reverses polarity near sunspot cycle maximum, which (presumably)

corresponds to the epoch of peak internal toroidal field T. The poloidal component
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P, in turn, peaks at time of sunspot minimum. The cyclic regeneration of the Sun’s

full large-scale field can thus be thought of as a temporal sequence of the form

PðþÞ ! Tð�Þ ! Pð�Þ ! TðþÞ ! PðþÞ ! . . .; ð13Þ

where the ðþÞ and ð�Þ refer to the signs of the poloidal and toroidal components, as

established observationally. A full magnetic cycle of period ’ 22 years thus consists

of two successive sunspot cycles, each of duration 
 11 years. The dynamo problem

can thus be broken into two sub-problems: generating a toroidal field from a pre-

existing poloidal component (P ! T), and a poloidal field from a pre-existing

toroidal component (T ! P). In the solar case, the former turns out to be

straightforward, but the latter is not.

3.1 Poloidal to toroidal: P ! T

Consider the various terms on the RHS of Eq. (9); transport neither creates nor

destroys magnetic flux, and resistive decay destroys magnetic flux. The compression

term does not contribute significantly for strongly subsonic flows, for which

r � u ’ 0.2 The shearing term in Eq. (9), however, is a true source term, as it

amounts to converting rotational kinetic energy into magnetic energy. This is the

needed P ! T production mechanism, and it plays a major role in very nearly all
extant dynamo models of the solar cycle.

Neglecting resistive decay and meridional flows, the /-component of the

induction equation (9) integrates to yield a linear growth of the toroidal magnetic

component B in response to (kinematic) shearing of a pre-existing poloidal magnetic

field Bp (� r� ðAê/Þ) by differential rotation:

Bðr; h; tÞ ¼ Bp � rX
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

shearing

t:
ð14Þ

It is easily verified that over a 
 10 years time span a solar-like differential rotation

can shear a 
 10G dipole into 
 1 kG toroidal field, antisymmetric about the

equatorial plane, in agreement with Hale’s Laws. However, there is no comparable

source term on the RHS of Eq. (8); this becomes clearer upon rewriting this

expression in the equivalent form:

o

ot
þ up � r

� �
ð-AÞ ¼ g r2 � 1

-2

� �
A:

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
resistive decay

ð15Þ

The LHS is the Lagrangian derivative of -A, and described the variation of this

quantity as a fluid element is followed in the meridional flow up. The RHS is again

2 For strongly subsonic flows in a density-stratified environment such a stellar interiors, one should in

fact write r � ðquÞ ¼ 0, so that in fact r � u ¼ �u � rðlogqÞ; The compression/expansion term can thus

become an important field amplification agent in regions of strong density stratification, such as the outer

reaches of the solar convection zone. Thus this process can achieve field amplification, but does not

generate new magnetic flux; it results from flux conservation.

123

Dynamo models of the solar cycle Page 13 of 104 4



dissipation. Therefore, no matter what the toroidal component does and how A is

advected around by the meridional flow, A will inexorably decay. Going back now

to Eq. (9), notice now that once A is gone, the shearing term vanishes, which means

that B will in turn inexorably decay. This is the essence of Cowling’s theorem: an
axisymmetric flow cannot sustain an axisymmetric magnetic field against resistive

decay.3

3.2 Toroidal to poloidal: T ! P

In view of Cowling’s theorem, we have no choice but to look for some

fundamentally non-axisymmetric process to provide an additional source term in

Eq. (8). It turns out that under solar interior conditions, there exist various

mechanisms that can power an azimuthally-oriented electromotive force (hereafter

emf), and thus act as a source of poloidal magnetic field. In what follows we

introduce and briefly describe the three classes of such mechanisms that appear most

promising, but defer discussion of their implementation in dynamo models to

Sects. 4 and 5, where illustrative solutions are also presented.

3.2.1 Turbulence and mean-field electrodynamics

The outer 
 30% of the Sun are in a state of thermally-driven turbulent convection.

This turbulence is anisotropic because of the stratification imposed by gravity, and

lacks reflectional symmetry due to the influence of the Coriolis force. Since we are

primarily interested in the evolution of the large-scale magnetic field (and perhaps

also the large-scale flow), mean-field electrodynamics offers a tractable alternative

to 3D turbulent MHD. The idea is to express the total flow and field as the sum of

mean components, uh i and Bh i, and small-scale fluctuating components u0, B0. This
is not a linearization procedure, in that we are not assuming that ju0j=j uh ij � 1 or

jB0j=j Bh ij � 1. In the context of the axisymmetric models to be described below,

the averaging (‘‘h i’’) is most naturally interpreted as a longitudinal average, with

the fluctuating flow and field components vanishing when so averaged, i.e., u0h i ¼ 0

and B0h i ¼ 0. The mean field Bh i is then interpreted as the large-scale,

axisymmetric magnetic field usually associated with the solar cycle. Upon this

separation and averaging procedure, the MHD induction equation for the mean

component becomes

o Bh i
ot

¼ r� ð uh i � Bh i þ E � gr� Bh iÞ; ð16Þ

with

E ¼ u0 � B0h i ð17Þ

being the mean turbulent electromotive force induced by the fluctuating flow and

field components. Its appearance in Eq. (16) is the only novelty, as compared the

3 Note, however, that an axisymmetric flow can sustain a non-axisymmetric magnetic field against

resistive decay.
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original MHD induction Eq. (1). It arises here because the cross product u0 � B0 in
general will not vanish upon averaging, even though u0 and B0 do so individually.

The reader versed in fluid dynamics will have recognized in the turbulent

electromotive force the equivalent of Reynolds stresses appearing in mean-field

versions of the Navier–Stokes equations, and will have anticipated that the next

(crucial!) step is to relate E to the mean field Bh i in order to achieve closure. This is

carried out by expressing E as a truncated series expansion in Bh i and its

derivatives. Retaining the first two terms yields, in component notation:

Ei ¼ aij Bh ijþbijk
o Bh ij
oxk

þ � � � ð18Þ

where truncation is warranted if a good separation of scales exists between Bh i and
B0. In such an expansion the tensors components aij and bijk may depend on

properties of the flow, but not on Bh i. For the purposes of the foregoing construction
of dynamo models, it is useful and instructive to separate the symmetric and

antisymmetric parts of these tensors and rewrite (18) in the form:

E ¼ a � Bh i þ c� Bh i � b � ðr � Bh iÞ þ . . . ð19Þ

where the tensor a is the symmetric part of a, the vector c collects the three

independent components of the antisymmetric part of a, and the rank-2 tensor b

collects the antisymmetric part of b (see Krause and Rädler 1980; Schrinner et al.

2007, for further details).

Calculating the components of these various tensors requires a turbulence model,

and is no trivial task. We defer discussion of specific formulations to Sect. 4.2, but

note already the following:

• Even if Bh i is axisymmetric, the a-term in Eq. (18) will effectively introduce

source terms for A and B in both Eqs. (8) and (9), so that Cowling’s theorem can

be circumvented.

• The helical twisting of toroidal fieldlines by the Coriolis force, as originally

proposed by Parker (1955), corresponds to a specific functional form for a, and

so finds formal quantitative expression in mean-field electrodynamics.

• The isotropic part of the b tensor directly adds to g in Eq. (16); it corresponds to

a turbulent diffusivity, and will thus enhance the dissipation of the large-scale

magnetic component Bh i.

The crucial a � Bh i term on the RHS of Eq. (19) is called the a-effect; it acts as a
source term for both A and B, and thus offers a viable T ! P mechanism; but there

is no free lunch here: there cannot be an a-term without an associated turbulent

diffusivity, as both are parts of the turbulent electromotive force E.

3.2.2 The Babcock–Leighton mechanism

The larger sunspot pairs (‘‘bipolar magnetic regions’’, hereafter BMR) often emerge

with a systematic tilt with respect to the E–W direction, in that on average, the
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leading sunspot (with respect to the direction of solar rotation) is located at a lower

latitude than the trailing sunspot, the more so the higher the latitude of the emerging

BMR (see, e.g., Stenflo and Kosovichev 2012; McClintock and Norton 2013). This

pattern is known as ‘‘Joy’s law’’. The tilt of the magnetic axis of a BMR implies a

non-zero projection along the N–S direction, which amounts to a dipole moment.

The decay of BMRs and subsequent dispersal of their magnetic flux by surface

flows can release a fraction of this dipole moment and contribute to the global

dipole.

This process is clearly observed in synoptic magnetograms such as Fig. 3, and is

well reproduced by surface flux transport simulations (more on these in Sect. 5.2

below). The net effect of the emergence and decay of many such BMRs is thus to

take a formerly toroidal internal magnetic field and convert a fraction of its

associated flux into a net surface dipole moment, i.e., T ! P. This is known as the

Babcock–Leighton mechanism, after Babcock (1961) and Leighton (1964).

Together with shearing by differential rotation, it can in principle yield a working

dynamo loop.

The solar polar cap magnetic flux adds up to 
 1022 Mx, which is equivalent to

the unsigned flux contained in one large bipolar active regions. About 1025 Mx of

(unsigned) magnetic flux emerge in bipolar active regions in the course of a typical

activity cycle, so the toroidal-to-poloidal flux conversion efficiency required of the

Babcock–Leighton mechanim is quite low. As per Eq. (14), the poloidal flux so

produced would in itself be sufficient to account for the magnetic flux emerging in

all active regions in a cycle, considering the amplitude of the observed differential

rotation (on this point see also Cameron and Schüssler 2015).

3.2.3 Hydrodynamical and magnetohydrodynamical instabilities

The tachocline is the rotational shear layer uncovered by helioseismology

immediately beneath the Sun’s convective envelope, providing a smooth match

between the latitudinal differential rotation of the envelope, and the rigidly rotating

radiative core (see, e.g., Spiegel and Zahn 1992; Brown et al. 1989; Tomczyk et al.

1995; Gough and McIntyre 1998; Charbonneau et al. 1999, and references therein).

A number of magnetofluid instabilities can be excited within the tachocline, and the

associated flow perturbations can develop a net helicity under the action of the

Coriolis force. A systematic twist can then be imparted to an ambient mean toroidal

field (or magnetic flux rope). This can drive an azimuthal mean electromotive force,

and act as a T ! P source for the poloidal component in a manner qualitatively

similar to the a-effect. Operating in in conjunction with rotational shearing of the

poloidal field, such instabilities can potentially lead to a working dynamo loop.

Instabilities investigated in this context include horizontal hydrodynamical and

MHD shear instabilities (Dikpati and Gilman 2001; Arlt et al. 2007b; Cally et al.

2008; Dikpati et al. 2009), helical wave instabilities along magnetic flux ropes

(Schüssler 1996; Schüssler and Ferriz-Mas 2003; Ferriz-Mas et al. 1994) and the

buoyancy-drive or shear-driven breakup of thin magnetized fluid layers (Matthews

et al. 1995; Thelen 2000a; Chatterjee et al. 2011).
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4 A selection of representative mean-field models

Each and every one of the T ! P mechanisms described in Sect. 3.2 relies on

fundamentally non-axisymmetric physical effects, yet these must be ‘‘forced’’ into

axisymmetric dynamo equations for the mean magnetic field. There are a great

many different ways of doing so, which explains the wide variety of dynamo models

of the solar cycle to be found in the recent literature. The aim of this and the

following section is to provide representative examples of various classes of models,

to highlight their similarities and differences, and illustrate their successes and

failings. In all cases, the model equations are to be understood as describing the

evolution of the mean field Bh i, namely the large-scale, slowly varying,

axisymmetric component of the total solar magnetic field. For those wishing to

code up their own versions of these (relatively) simple models, Jouve et al. (2008)

have set up a suite of benchmark calculations against which numerical dynamo

solutions can be validated.

4.1 Common model ingredients

All kinematic solar dynamo models have some basic ‘‘ingredients’’ in common,

most importantly (i) a solar structural model, (ii) a differential rotation profile, and

(iii) a magnetic diffusivity profile (possibly depth-dependent).

Helioseismology has pinned down with great accuracy the internal solar

structure, including the exact location of the core–envelope interface (Basu 2016),

as well as the internal differential rotation (Howe 2009). Unless noted otherwise, all

illustrative models discussed in this section are computed using the following

analytic formulae for the angular velocity Xðr; hÞ and magnetic diffusivity gðrÞ:

Xðr; hÞ
XE

¼ XC þ XSðhÞ � XC

2
1þ erf

r � rc
w

� �h i
; ð20Þ

with

XSðhÞ ¼ 1� a2 cos
2 h� a4 cos

4 h; ð21Þ

and

gðrÞ
gT

¼ Dgþ 1� Dg
2

1þ erf
r � rc
w

� �h i
: ð22Þ

With appropriately chosen parameter values, Eq. (20) describes a solar-like dif-

ferential rotation profile, namely a purely latitudinal differential rotation in the

convective envelope, with equatorial acceleration and smoothly matching a core

rotating rigidly at the angular speed of the surface mid-latitudes.4 This rotational

transition takes place across a spherical shear layer of half-thickness w coinciding

with the core–envelope interface at rc=R	 ¼ 0:7 (see Fig. 4b, with parameter values

4 Belvedere et al. (2000) presents an alternate analytic expression that is even closer to helioseismic

inversions.
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listed in caption). As per Eq. (22), a similar transition takes place with the net

diffusivity, falling from some large, ‘‘turbulent’’ value gT in the envelope to a much

smaller diffusivity gc in the convection-free radiative core, the diffusivity contrast

being given by Dg ¼ gc=gT. Given helioseismic constraints, these represent mini-

mal yet reasonably realistic choices.5

Such a solar-like differential rotation profile is quite complex, in that it is

characterized by three partially overlapping shear regions: a strong positive radial

shear in the equatorial regions of the tachocline, an even stronger negative radial

shear in its the polar regions, and a significant latitudinal shear throughout the

convective envelope and extending partway into the tachocline. For a tachocline of

half-thickness w=R	 ¼ 0:05, the mid-latitude latitudinal shear at r=R	 ¼ 0:7 is

comparable in magnitude to the equatorial radial shear; its potential contribution to

dynamo action should not be casually dismissed.

(A)

(B) (C)

Fig. 4 Common ingredients to the mean-field and mean-field-like dynamo models discussed in this and
the following section. Panel b shows the run of net magnetic diffusivity (blue) with depth, as described by
Eq. (22), with parameter values rc=R	 ¼ 0:7 and w=R	 ¼ 0:05. The red and green profiles refer to the
depth dependency of the poloidal source terms introduced in Sects. 4.2.10 and 5.4.2, respectively. Panel b
shows isocontours of angular velocity normalized to the surface equatorial value, as generated by Eq. (20)
with parameter values XC ¼ 0:8752, a2 ¼ 0:1264, a4 ¼ 0:1591. The radial shear changes sign at
colatitude h ¼ 55� at the core–envelope interface (dotted line on all panels). Panel c depicts streamlines
of the meridional flow, from the model of van Ballegooijen and Choudhuri (1988), with parameter values
m ¼ 0:5, p ¼ 0:25, q ¼ 0, and rb ¼ 0:675

5 Helioseismology has also revealed the existence of a significant radial shear in the outermost layers of

the solar convective envelope. Even if the storage problem could be somehow bypassed, it does not

appear possible to construct a viable solar dynamo model relying exclusively on this angular velocity

gradient (see, e.g., Dikpati et al. 2002; Brandenburg 2005; Pipin and Kosovichev 2011b, for illustrative

calculations).
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4.2 aX mean-field models

4.2.1 Calculating the a-effect and turbulent diffusivity

Mean-field electrodynamics is a subject well worth its own full-length review, so

the foregoing discussion will be limited to the bare essentials. Detailed discussion of

the topic can be found in Krause and Rädler (1980), Moffatt (1978), Rüdiger and

Hollerbach (2004), chapter 3 in Schrijver and Siscoe (2009), and in the recent

review articles by Ossendrijver (2003) and Hoyng (2003).

The task at hand is to calculate the components of the a and b tensor in terms of

the statistical properties of the underlying turbulence. A particularly simple case is

that of homogeneous, weakly anisotropic turbulence, which reduces the a and b

tensor to simple scalars, so that the mean electromotive force becomes

E ¼ a Bh i � br� Bh i: ð23Þ

This is the form commonly used in solar dynamo modelling, even though turbulence

in the solar interior is most likely inhomogeneous and anisotropic. There are three

(kinematic) regimes in which simple closed form expressions for a and b can be

obtained in terms of the small-scale flow u0, all ultimately amounting to the large-

scale field Bh i suffering little deformation by the turbulent flow u0:

1. weak turbulent magnetic fields, in the sense jB0j � j Bh ij,
2. low (\1) magnetic Reynolds number Rm ¼ v‘=g,
3. short coherence time turbulence, in the sense that the lifetime of turbulent

eddies sc is smaller than their turnover time ‘=v, i.e., the Strouhal Number

St ¼ scv=‘\1.

With mixing length theory of convection suggesting v
 104 cm s�1 and ‘
 109 cm

as characteristic velocities and length scales for the dominant turbulent eddies, and

g
 104 cm2 s�1, one finds Rm ¼ v‘=g
 109; mixing length convection also

implicitly assumes St ’ 1, and high-Rm MHD turbulence simulations suggest that

jB0j � j Bh ij if a mean-field is present at all. Equation (23) should be dubious

already. Nonetheless, if either of the three conditions above is satisfied, it can be

shown that in the kinematic regime (i.e., a and b are not affected by either Bh i or
B0):

a
 � sc
3

u0 � r � u0h i; ð24Þ

b
 sc
3

ðu0Þ2
D E

: ð25Þ

Order-of-magnitude estimates of the scalar coefficients yield a
X‘ and b
 v‘,
where X is the solar angular velocity. At the base of the solar convection zone, one

then finds a
 103 cm s�1 and b
 1012 cm2 s�1, these being understood as very

rough estimates. Because the kinetic helicity may well change sign along the lon-

gitudinal (averaging) direction, thus leading to cancellation, the resulting value of a
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may be much smaller than its r.m.s. deviation about the longitudinal mean. In

contrast the quantity being averaged on the right hand side of Eq. (25) is positive

definite, so one would expect a more ‘‘stable’’ mean value (see Hoyng 1993;

Ossendrijver et al. 2001, for further discussion). Equations (24)–(25) certainly

indicate that one cannot have an a-effect without turbulent diffusivity being also

present, but that the converse is possible, e.g. for non-helical flows. At any rate,

difficulties in computing a and b from first principle (whether as scalars or tensors)

have led to these quantities often being treated as free parameters of mean-field

dynamo models, to be adjusted (within reasonable bounds) to yield the best possible

fit to observed solar cycle characteristics, most importantly the cycle period. One

finds in the literature numerical values in the approximate ranges 10�103 cm s�1 for

a and 1010�1013 cm2 s�1 for b.
The cyclonic character of the a-effect also indicates that it is equatorially

antisymmetric and positive in the Northern solar hemisphere, except perhaps at the

base of the convective envelope, where the horizontal divergence of downflows can

lead to a sign change. These expectations have been confirmed in a general sense by

theory and numerical simulations (see, e.g., Rüdiger and Kitchatinov 1993;

Brandenburg et al. 1990; Ossendrijver et al. 2001; Käpylä et al. 2006a, also Sect. 6

herein).

In cases where the turbulence is more strongly inhomogeneous, an additional

effect comes into play: turbulent pumping. Mathematically it is associated with the

antisymmetric part to the a-tensor in Eq. (19), whose three independent components

can be recast as a velocity-like vector field c that acts as an additional (and non-

solenoidal) contribution to the mean flow:

E ¼ a Bh i þ c� Bh i þ br� Bh i: ð26Þ

with

c
 � 1

6
scr ðu0Þ2

D E
; ð27Þ

in the same kinematic physical regimes in which Eqs. (24)–(25) hold.

4.2.2 Algebraic a-quenching

Assuming the dynamo-generated magnetic field grows in time, magnetic tension

will increasingly resist deformation by the small-scale turbulent fluid motions.

Something is bound to happen when the growing dynamo-generated mean magnetic

field reaches a magnitude such that its energy per unit volume is comparable to the

kinetic energy of the underlying turbulent fluid motions:

Bh i2

8p
¼ 1

2
qðu0Þ2: ð28Þ

Denoting the corresponding equipartition field strength by Beq, one often introduces

an ad hoc nonlinear dependency of a directly on the mean-field Bh i by writing:
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a ! að Bh iÞ ¼ a0
1þ ð Bh i=BeqÞ2

: ð29Þ

This expression ‘‘does the right thing’’, in that a ! 0 as Bh i starts to exceed Beq. It

remains an extreme oversimplification of the complex interaction between flow and

field that characterizes MHD turbulence,6 but its wide usage in solar dynamo modeling

makes it a nonlinearity of choice for the illustrative purpose of this section.

4.2.3 Dynamical a-quenching

The nonlinear feedback of the small-scale magnetic field B0 on small-scale cyclonic

turbulence can be also understood in terms of magnetic helicity conservation.

Magnetic helicity (H) is a topological measure of linkage between magnetic flux

systems linking a volume of fluid (Berger 1999). It is mathematically defined as

HB ¼
Z
V

A � BdV ; ð30Þ

where B ¼ r� A. In a closed system, i.e. without helicity flux through its

boundaries, magnetic helicity can be shown to evolve according to:

d

dt

Z
A � BdV ¼ � 8pg

c

Z
J � BdV: ð31Þ

In the ideal limit g ! 0, which is the relevant limit for dynamo action in the interior

of the sun and stars, the RHS vanishes and Eq. (31) then indicates that total helicity

must be conserved, or at best vary on the (long) diffusive timescale. Conservation of

magnetic helicity thus puts a strong constraint on the high-Rm amplification of any

magnetic field that carries a net helicity, which is certainly the case with the large-

scale solar magnetic field.

Following the scale separation logic introduced in Sect. 3.2.1, and because both the

current density J and vector potential A are linearly related to B, the total vector

potential and electric current density can be written as A ¼ Ah i þ A0 and J ¼ Jh i þ J0,
with again A0h i ¼ 0 and J0h i ¼ 0. Substituting into Eq. (31) and averaging leads to an

evolution equation for the mean helicity of the large-scale field:

d

dt

Z
Ah i � Bh idV ¼ þ2

Z
E � Bh idV � 8pg

c

Z
Jh i � Bh idV; ð32Þ

where E ¼ u0 � B0h i is the usual turbulent emf (see, e.g., Sect. 3.4.7 in Schrijver

and Siscoe 2009). Subtracting Eq. (32) from the unaveraged form of (31) yields a

companion equation for the evolution of small-scale magnetic helicity:

d

dt

Z
A0 � B0h idV ¼ �2

Z
E � Bh idV � 8pg

c

Z
J0 � B0h idV : ð33Þ

6 Dynamo saturation can also occur by magnetically-mediated changes in the chaotic properties of a

turbulent flow, without significant decrease in the turbulent flow amplitudes; see Cattaneo et al. (1996)

for a nice, simple example.
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Because the first terms on the RHS of Eqs. (32) and (33) are identical but for their

sign, the total helicity given by the sum of Eqs. (32) and (33) is still conserved in the

ideal limit g ! 0. But these expressions also indicate that the turbulent emf leads to

the buildup of helicity of opposite signs at large and small spatial scales. This

corresponds to a dual helicity cascade away from the scale at which the emf is

operating (Brandenburg 2001). Buildup of a helical large-scale magnetic field is

only possible in the Rm ! 1 regime because an equal amount of oppositely-signed

magnetic helicity is cascading down to dissipative scales. In this way Bh i can be

amplified by the turbulent electromotive force E, with its growth rate ultimately

determined by the rate at which helicity can be transported and dissipated at small

scales, or evacuated from the region where dynamo action is taking place (Pipin

et al. 2013; Blackman 2015).

Following Pouquet et al. (1976), the total (isotropic) a-effect is often written as

the sum of a two contributions, proportional respectively to the kinetic and magnetic

(current) helicities:

a ¼ aK þ aM ¼ � sc
3

u0 � r � u0h i � 1

q
B0 � r � B0h i

� �
: ð34Þ

A key finding of Pouquet et al. (1976) is that these two contributions have opposite

signs, i.e, the magnetic helicity contribution to the total a-effect opposes that of

kinetic helicity. This forms the basis of the various dynamical a-quenching for-

mulations that have been proposed in the literature (e.g., Kleeorin et al. 1995;

Blackman and Brandenburg 2002, and references therein). For example, Branden-

burg et al. (2009) take aK to be temporally steady and given by Eq. (24), and the

evolution of the magnetic contribution to be described by:

oaM
ot

¼ �2gk2f
E � Bh i
B2
eq

þ aM
Rm

 !
; ð35Þ

in the absence of helicity fluxes in or out of the dynamo region. The quantity kf is a

scale factor relating current to magnetic helicity. Stable cycles amplitudes can be

obtained by quenching the a-effect in this manner (see also Schmalz and Stix 1991;

Chatterjee et al. 2011; Pipin et al. 2012). Indeed, the quenching can even become

‘‘catastrophic’’, in the sense that it sets in long before the mean-field reaches sig-

nificant strength (see Brandenburg and Subramanian 2005).

An interesting situation can arise if the growth of aM is such that jaMj[ jaK j over
a substantial fraction of the magnetic cycle. The resulting sign change in the total a-
effect can then lead to a reversal in the direction of dynamo wave propagation

(viz. Sect. 4.2.9 below). The effect has been observed in the mean-field model

of Chatterjee et al. (2011), and may also be at play in some of the MHD simulations

discussed in Sect. 6 further below.
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4.2.4 Diffusivity quenching

The same small-scale magnetic field that quenches the a-effect can in principle also

reduce the turbulent diffusivity b (Sect. 4.2.1). This effect has been included in

some mean-field and mean-field-like solar cycle models, sometimes via a simple

algebraic parametrization similar to Eq. (29) (e.g., Tobias 1996; Guerrero et al.

2009), sometimes in a more elaborate manner through specific turbulence models

(e.g., Rüdiger et al. 1994; Rüdiger and Arlt 1996), and sometimes through a

dynamical equation for b in the spirit of dynamical a-quenching (e.g., Muñoz-

Jaramillo et al. 2011). The nature and magnitude of the consequent impact on cyclic

amplitude and period are highly model-dependent. A noteworthy effect of magnetic

diffusivity quenching is the possibility to produce super-equipartition magnetic

fields in the tachocline (Tobias 1996; Gilman and Rempel 2005). On the other hand,

the stability analyses of Arlt et al. (2007a, b) suggests that there exist a lower limit

to the magnetic diffusivity, below which equipartition-strength toroidal magnetic

field beneath the core–envelope interface become unstable.

4.2.5 Backreaction on large-scale flows

The backreaction of the growing magnetic field on the large-scale flows contributing

to induction and transport can also quench the growth of the dynamo. In the context

of solar cycle models, one could expect the Lorentz force to reduce the amplitude of

differential rotation, gradually decreasing its inductive effect until the magnetic field

amplitude stabilizes, as it does under a-quenching. In the mean-field literature it has

become costumary to distinguish two classes of (related) amplitude-limiting

mechanisms:

• The Malkus–Proctor effect (after the groudbreaking numerical investigations

of Malkus and Proctor 1975): this is the Lorentz force associated with the mean

magnetic field directly affecting the large-scale flow uh i.
• K-quenching (e.g., Kitchatinov and Rüdiger 1993; Kitchatinov et al. 1994): this

is the Lorentz force impacting small-scale turbulence and the associated

Reynolds stresses powering large-scale flows.

An efficient approach to model the Malkus–Proctor effect consists in simply

dividing the large-scale flow into two components, the first (U) corresponding to

some prescribed, steady profile, and the second (U0) to a time-dependent flow field

driven by the Lorentz force (see, e.g., Tobias 1997; Beer et al. 1998; Moss and

Brooke 2000; Thelen 2000b; Covas et al. 2001; Brooke et al. 2002; Bushby 2006;

Simard and Charbonneau 2020):

u ¼ UðxÞ þ U0ðx; t; Bh iÞ; ð36Þ

with the (non-dimensional) governing equation for U0 including only the Lorentz

force and a viscous dissipation term on its right hand side:
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oU0

ot
¼ K

4pq
ðr � Bh iÞ � Bh i þ Pmr2U; ð37Þ

where time has been scaled according to the magnetic diffusion time s ¼ R2
	=gT.

Two dimensionless parameters appear in Eq. (37). The first (K) is a numerical

parameter setting the absolute scale of the magnetic field, and can be set to unity

without loss of generality (cf. Tobias 1997; Phillips et al. 2002). The second,

Pm ¼ m=g, is the magnetic Prandtl number. It measures the relative importance of

viscous and Ohmic dissipation. An additional, long timescale is thus introduced in

the system, associated with the evolution of the magnetically-driven flow; the

smaller Pm, the longer that timescale.

Incorporating K-quenching in mean-field or mean-field-like dynamo models

requires a turbulence model allowing to calculate Reynolds stresses and their

quenching by the magnetic field. Various such prescriptions have been developed

(see Kitchatinov et al. 1994), and, upon being inserted in dynamo models, can lead

to stable magnetic cycles (Küker et al. 1996; Rempel 2006a).

Nonlinear magnetic backreaction, whether through K quenching or the Malkus–

Proctor effect, can lead to strong modulation of the cycle amplitude and large-scale

flow unfolding on timescales much longer than the primary cycle if the Prandlt

number is significantly smaller than unity (see Brooke et al. 1998; Küker et al.

1999; Pipin 1999; Rempel 2006a); more on this in Sect. 7.2.3 further below.

4.2.6 Flux loss through magnetic buoyancy

Another amplitude-limiting mechanism is the loss of magnetic flux through

magnetic buoyancy. Magnetic fields concentrations are buoyantly unstable in the

convective envelope, and so should rise to the surface on time scales much shorter

than the cycle period (see, e.g., Parker 1975; Schüssler 1977; Moreno-Insertis

1983, 1986). This is often incorporated on the right-hand-side of the dynamo

equations by the introduction of an ad hoc loss term of the general form

�f ð Bh iÞ Bh i; the function f measures the rate of flux loss, and is often chosen

proportional to the magnetic pressure Bh i2, thus yielding a cubic damping

nonlinearity in the mean-field.

The degree to which flux emergence actually depletes the internal toroidal flux is

not trivial to estimate quantitatively, as it hinges critically on the longitudinal extend

of the buoyantly destabilized loop and on the manner in which the emerging flux

disconnects from the underlying axisymmetric toroidal magnetic flux system; see

Sect. 2.3 in Miesch and Teweldebirhan (2016) for an insightful discussion of this

issue. In addition to regulating cycle amplitude in dynamo models, (see, e.g., Sch-

mitt and Schüssler 1989; Moss et al. 1990), magnetic flux loss can also have a large

impact on the cycle period (Kitchatinov et al. 2000).
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4.2.7 The aX dynamo equations

Adding the mean-electromotive force given by Eq. (23) to the MHD induction

equation leads to the following form for the axisymmetric mean-field dynamo

equations:

o Ah i
ot

¼ ðgþ bÞ r2 � 1

-2

� �
Ah i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
turbulent diffusion

� up
-

� rð- Ah iÞ þ a Bh i|ffl{zffl}
MFE source

; ð38Þ

o Bh i
ot

¼ ðgþ bÞ r2 � 1

-2

� �
Bh i þ 1

-
o- Bh i
or

oðgþ bÞ
or|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

turbulent diffusion

�-up � r
Bh i
-

� �
� Bh ir � up

þ -ðr � ð Ah iê/ÞÞ � rX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
shearing

þr� ½ar� ð Ah iê/Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MFE source

; ð39Þ

[compare to Eqs. (8)–(9)]. There are now source terms on both right hand sides, so

that dynamo action becomes possible at least in principle. For solar-like convective

turbulence one expects b � g, and in what follows the total magnetic diffusivity is

denoted gT ¼ gþ b (’ b in the turbulent fluid layers). The relative importance of

the a-effect and shearing terms in Eq. (39) is measured by the ratio of the two

dimensionless dynamo numbers

Ca ¼
a0R	
g0

; CX ¼
ðDXÞ0R2

	
g0

; ð40Þ

where in the spirit of dimensional analysis, a0, g0, and ðDXÞ0 are ‘‘typical’’ values

for the a-effect, turbulent diffusivity, and angular velocity contrast. These quantities

arise naturally in the non-dimensional formulation of the mean-field dynamo

equations, when time is expressed in units of the magnetic diffusion time s based on

the envelope (turbulent) diffusivity:

s ¼
R2
	
g0

: ð41Þ

In the solar case, it is usually estimated that Ca � CX, so that the a-term is

neglected in Eq. (39); this results in the class of dynamo models known as aX
dynamos, which will be the only ones discussed in the remainder of this sec-

tion. Models retaining both a-terms are dubbed a2X dynamos, and may be relevant

to the solar case even in the Ca � CX regime, in particular if the latter operates in a

very thin layer, e.g. the tachocline (see, e.g., DeLuca and Gilman 1988; Gilman

et al. 1989; Choudhuri 1990).7

7 Models relying only on the two a-terms are said to be a2 dynamos. Such models are relevant to dynamo

action in planetary cores and convective stars with vanishing differential rotation (if such an object were

to exist).
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4.2.8 Eigenvalue problems and initial value problems

With the large-scale flows, turbulent diffusivity and a-effect considered given,

Eqs. (38, 39) become truly linear in A and B. It becomes possible to seek

eigensolutions in the form

Ah iðr; h; tÞ ¼ aðr; hÞ expðstÞ; Bh iðr; h; tÞ ¼ bðr; hÞ expðstÞ; ð42Þ

with s ¼ rþ ix. Substitution of these expressions into Eqs. (38, 39) yields an

eigenvalue problem for s and associated eigenfunction fa; bg. The real part r of the

eigenvalue is then a growth rate, and the imaginary part x an oscillation frequency.

One typically finds that r\0 until the total dynano number

D ¼ Ca � CX; ð43Þ

exceeds a critical value Dcrit beyond which r[ 0, corresponding to a growing

solutions. Such solutions are said to be supercritical, while the solution with r ¼ 0

is critical. A dynamo solution is considered weakly supercritical if its dynamo

number only slightly exceeds Dcrit; cyclic solution exhibiting polarity reversals

require x 6¼ 0. In the weakly supercritical regime such cyclic solutions typically

have r � x, while r � x in the strongly supercritical regime.

With any amplitude-limiting nonlinearity included, the dynamo equations are

usually solved as an initial-value problem, with some arbitrary low-amplitude seed

field used as initial condition. Equations (38, 39) are then integrated forward in time

using some appropriate time-stepping scheme. A useful quantity to monitor in order

to ascertain saturation is the magnetic energy within the computational domain:

EB ¼ 1

8p

Z
V

Bh i2 dV: ð44Þ

Figure 5 shows time series of this quantity in a sequence of a-quenched kinematic

aX mean-field dynamo solutions. The four solutions have increasing values for the

dynamo number D, and all start from the same initial condition of very weak

magnetic field.

The linear phase of exponential growth (gray lines), at rates increasing with D, is
followed by saturation at an energy level also increasing with D; these are behaviors
typical of a-quenched mean-field and mean-field-like dynamo models operating not

too far in the supercritical regime. Here a-quenching has the desired effect, namely

stabilizing the cycle amplitude at field strengths corresponding to a significant

fraction of the equipartition value Beq introduced in the quenching parametrization

(29). Dynamo models achieving amplitude saturation through backreaction on

large-scale flows (viz. Sect. 4.2.5) behave similarly, provided the magnetic Prandtl

number is not much smaller than unity.
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4.2.9 Dynamo waves and cycle period

One of the most remarkable property of the (linear) aX dynamo equations is that

they support travelling wave solutions. This was first demonstrated in Cartesian

geometry by Parker (1955), who proposed that a latitudinally-travelling ‘‘dynamo

wave’’ was at the origin of the observed equatorward drift of sunspot emergences in

the course of the cycle. This finding was subsequently shown to hold in spherical

geometry, as well as for non-linear models (Yoshimura 1975; Stix 1976). Dynamo

waves8 travel in a direction s given by

s ¼ arX� ê/; ð45Þ

a result now known as the ‘‘Parker–Yoshimura sign rule’’. Dynamo waves also

materialize in a2X mean-field dynamos (Choudhuri 1990), as long as the ratio

Ca=CX is not too high (see, e.g., Charbonneau and MacGregor 2001).

Recalling the rather complex form of the helioseismically inferred solar internal

differential rotation (cf. Fig. 4b), even an a-effect of uniform sign in each

hemisphere can produce complex migratory patterns, as will be apparent in the

illustrative aX dynamo solutions to be discussed presently. If the seat of the dynamo

is to be identified with the low-latitude portion of the tachocline, and if the (positive)

radial shear therein dominates over the latitudinal shear, then equatorward migration

of dynamo waves will require a negative a-effect in the low latitudes of the

Northern solar hemisphere.

In linear aX mean-field models without a significant meridional flow, the cycle

frequency increases with the total dynamo number D (viz. Eq. 43). In nonlinearly

saturated models, the cycle frequency shows reduced sensitivity to D and becomes

Fig. 5 Time series of total magnetic energy in an a-quenched kinematic axisymmetric aX mean-field
dynamo model, for increasing values of the dynamo number scaled to its critical value (D=Dcrit), as
labeled. Magnetic energy is scaled to the corresponding equipartition field strength Beq in Eq. (29), via

Eq. (44). All solutions are initialized with a purely toroidal magnetic field of very low amplitude. The
gray lines indicate the linear phase, during which the magnetic amplitude grows exponentially at a rate
increasing with the dynamo number. In the nonlinearly saturated phase that is eventually established, the
overall magnetic cycle amplitude increases with increasing value of the dynamo number

8 These are not ‘‘waves’’ in usual sense of the word, although they are described by modal solutions of

the form expðik � x� xtÞ; wave-like propagation results from a spatial offset between source and

dissipation.
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equal to some approximately fixed fraction of the magnetic diffusion time (41). The

primary determinant of the (dimensional) period then becomes the adopted value for

the turbulent diffusivity. Although model dependent to some extent, decadal periods

typically require a few 1011 to 1012 cm2 s�1, roughly consistent with estimates from

mixing length models of convective energy transport; values lower by a factors of


 10 are required for dynamos contained in radially thin layers, because the smaller

radial length scale enhances dissipation. Similarly low values are also possible (and

in fact expected) in the upper tachocline, where residual turbulent diffusivity

presumably results from convective overshoot. The ratio of poloidal-to-toroidal field

strength, in turn, is found to scale as some power (usually close to 1/2) of the ratio

Ca=CX, at a fixed value of the product Ca � CX.

4.2.10 Representative results

We first consider aX models without meridional circulation [up ¼ 0 in

Eqs. (38, 39)], with the a-term omitted in Eq. (39), and using the magnetic

diffusivity and angular velocity profiles of Fig. 4. We investigate the behavior of aX
models, with the a-effect concentrated just above the core–envelope interface (green
line on Fig. 4a). We also consider two latitudinal dependencies, namely a / cos h,
which is the ‘‘minimal’’ possible latitudinal dependency compatible with the

required equatorial antisymmetry of the Coriolis force, and an a-effect concentrated
towards the equator9 via an assumed latitudinal dependency a / sin2 h cos h. Unless
otherwise noted all models have CX ¼ 25;000, jCaj ¼ 10, gT=gc ¼ 10, and

gT ¼ 5� 1011 cm2 s�1, which leads to s ’ 300 years. To facilitate comparison

between solutions, here antisymmetric parity is imposed via the boundary condition

at the equator (via Eq. 11). Algebraic a-quenching, in the form of Eq. (29), is

chosen as the amplitude-limiting nonlinearity.

Figures 6 and 7 show a selection of such dynamo solutions, in the form of

animations in meridional planes and time–latitude diagrams of the toroidal field

extracted at the core–envelope interface, here rc=R	 ¼ 0:7. If sunspot-producing

toroidal flux ropes form in regions of peak toroidal field strength, and if those ropes

rise radially to the surface, then such diagrams are directly comparable to the

sunspot butterfly diagram of Fig. 2.

Examination of these animations reveals that the dynamo is concentrated in the

vicinity of the core–envelope interface, where the adopted radial profile for the a-
effect is maximal (cf. Fig. 4a). In conjunction with a fairly thin tachocline, the radial

shear therein then dominates the induction of the toroidal magnetic component.

With an eye on Fig. 4b, notice also how the dynamo waves propagates along

isocontours of angular velocity, in agreement with the Parker–Yoshimura sign rule

(cf. Sect. 4.2.9). Note that even for an equatorially-concentrated a-effect (Panels b
and c), a strong polar branch is nonetheless apparent in the butterfly diagrams, a

direct consequence of the stronger radial shear present at high latitudes in the

tachocline (see also corresponding animations). Models using an a-effect operating

9 Although some turbulence model predict such higher-order latitudinal dependencies, the functional

forms adopted here are largely ad hoc, and are made for strictly illustrative purposes.
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throughout the whole convective envelope, on the other hand, would feed primarily

on the latitudinal shear therein, so that for positive Ca the dynamo mode would

propagate radially upward in the envelope (see Lerche and Parker 1972).

It is noteworthy that co-existing dynamo branches, as in Panel b of Fig. 7, can

have distinct dynamo periods (on this see also Belvedere et al. 2000), which in

nonlinearly saturated solutions leads to long-term amplitude modulation. This is

typically not expected in dynamo models where the only nonlinearity present is a

Fig. 6 Stills from meridional
plane animations of various aX
dynamo solutions using different
latitudinal profiles and sign for
the a-effect, as labeled. The
polar axis coincides with the left
quadrant boundary. The toroidal
field is plotted as filled contours
(constant increments, green to
blue for negative B, yellow to
red for positive B), on which
poloidal fieldlines are
superimposed (blue for
clockwise-oriented fieldlines,
orange for counter-clockwise
orientation). The dashed line is
the core–envelope interface at
rc=R ¼ 0:7. Time–latitude
‘‘butterfly’’ diagrams for these
three solutions are plotted in
Fig. 7. For accompanying
movies, see the supplementary
material section below
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simple algebraic quenching formula such as Eq. (29). This does not occur for the

Ca\0 solution, where both branches propagate away from each other, but share a

common latitude of origin and so are phased-locked at the onset (cf. Panel c of

Fig. 7).

The models discussed above are based on rather minimalistics and partly ad hoc

assumptions on the form of the a-effect. More elaborate models have been

proposed, relying on calculations of the full a-tensor based on an underlying

turbulence model (see, e.g., Kitchatinov and Rüdiger 1993). While this approach

usually displaces the ad hoc assumptions into the turbulence model, it has the

definite merit of offering an internally consistent approach to the calculation of

turbulent diffusivities and large-scale flows. Rüdiger and Brandenburg (1995)

and Rempel (2006b) remain a good example of the current state-of-the-art in this

area; see also Rüdiger and Arlt (2003), Inceoglu et al. (2017), and references

therein.

4.2.11 Critical assessment

From a practical point of view, the outstanding success of the mean-field aX model

remains its robust explanation of the observed equatorward drift of toroidal field-

tracing sunspots in the course of the cycle in terms of a dynamo wave. On the

(A)

(B)

(C)

Fig. 7 Northern hemisphere time–latitude (‘‘butterfly’’) diagrams for the three aX dynamo solutions of
Fig. 6, constructed at the depth rc=R	 ¼ 0:7 corresponding to the core–envelope interface. Isocontours of
toroidal field are normalized to their peak amplitudes, and plotted for increments DB=maxðBÞ ¼ 0:2, with
yellow-to-red (green-to-blue) contours corresponding to B[ 0 (\0). The assumed latitudinal
dependency of the a-effect is given above each panel. Other model ingredients as in Fig. 4. Note the
co-existence of two distinct cycle periods in the solution shown in Panel b
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theoretical front, the model is also buttressed by mean-field electrodynamics which,

in principle, offers a physically sound theory from which to compute the (critical) a-
effect and magnetic diffusivity. The models’ primary uncertainties turn out to lie at

that level, in that the application of the theory to the Sun in a tractable manner

requires additional assumptions that are most likely not met under solar interior

conditions. Those uncertainties are exponentiated when taking the theory into the

nonlinear regime, to calculate the dependence of the a-effect and diffusivity on the

magnetic field strength. This latter problem remains very much open at this writing.

4.3 Interface dynamos

4.3.1 Strong a-quenching and the saturation problem

The a-quenching expression (29) used in the preceding section amounts to saying

that dynamo action saturates once the mean, dynamo-generated field reaches an

energy density comparable to that of the driving turbulent fluid motions

[viz. Eq. (28)]. At the base of the solar convective envelope, one finds

Beq ’ 8 kG, for v ’ 5� 103 cm s�1, according to mixing length theory of

convection. However, various calculations and numerical simulations have

indicated that long before the mean field Bh i reaches this strength, the helical

turbulence reaches equipartition with the small-scale, turbulent component of the

magnetic field (e.g., Cattaneo and Hughes 1996, and references therein), ultimately

as a consequence of the constraint posed by magnetic helicity conservation

(viz. Sect. 4.2.3 herein; see also Brandenburg and Subramanian 2005). Such

calculations also indicate that the ratio between the small-scale and mean magnetic

components should itself scale as Rm1=2, where Rm ¼ v‘=g is a magnetic Reynolds

number based on the microscopic magnetic diffusivity. This then leads to the

alternate algebraic quenching expression

a ! að Bh iÞ ¼ a0
1þ Rmð Bh i=BeqÞ2

; ð46Þ

known in the literature as strong a-quenching or catastrophic quenching. Since

Rm
 109 in the solar convection zone, this leads to quenching of the a-effect for
very low amplitudes for the mean magnetic field, of order 10�1 G. Even though

significant field amplification is likely in the formation of a toroidal flux rope from

the dynamo-generated magnetic field, we are now a very long way from the

10–100 kG demanded by simulations of buoyantly rising magnetic flux ropes

(see Fan 2009).

A beautifully simple way out of this difficulty was proposed by Parker (1993), in

the form of interface dynamos. In a situation where a radial shear and a-effect are
segregated on either side of a discontinuity in magnetic diffusivity (taken to

coincide with the core–envelope interface), the aX dynamo equations support

solutions in the form of travelling surface waves localized on the discontinuity in

diffusivity. The key aspect of Parker’s solution is that for supercritical dynamo
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waves, the ratio of peak toroidal field strength on either side of the discontinuity

surface is found to scale with the diffusivity ratio as

maxðB2Þ
maxðB1Þ


 g2
g1

� ��1=2

; ð47Þ

where the subscript ‘‘1’’ refers to the low-g region below the core–envelope inter-

face, and ‘‘2’’ to the high-g region above. If one assumes that the envelope diffu-

sivity g2 is of turbulent origin then g2 
 ‘v, so that the toroidal field strength ratio

then scales as 
ðv‘=g1Þ1=2 � Rm1=2. This is precisely the factor needed to bypass

strong a-quenching (Charbonneau and MacGregor 1996). Somewhat more realistic

variations on Parker’s basic model were later elaborated (MacGregor and Char-

bonneau 1997; Zhang et al. 2004), and, while differing in important details,

nonetheless confirmed Parker’s overall picture. Tobias (1996) discusses in detail a

related Cartesian model bounded in both horizontal and vertical direction, but with

constant magnetic diffusivity g throughout the domain. Like Parker’s original

interface configuration, his model includes an a-effect residing in the upper half of

the domain, with a purely radial shear in the bottom half. The introduction of

diffusivity quenching then reduces the diffusivity in the shear region, ‘‘naturally’’

turning the model into a bona fide interface dynamo, supporting once again oscil-

latory solutions in the form of dynamo waves travelling in the ‘‘latitudinal’’ x-
direction. This basic model was later generalized by various authors (Tobias 1997;

Phillips et al. 2002) to include the nonlinear backreaction of the dynamo-generated

magnetic field on the differential rotation (as described in Sect. 4.2.5).

4.3.2 Representative results

The next obvious step is to construct an interface dynamo in spherical geometry,

using a solar-like differential rotation profile. Such numerical models can be

constructed as a variation on the aX models considered earlier, introducing a

continuous but rapidly varying diffusivity profile at the core–envelope interface, an

a-effect concentrated at the base of the envelope, and the radial shear immediately

below, but without significant overlap between these two source regions (see

Panel b of Fig. 8).

In spherical geometry, and especially in conjunction with a solar-like differential

rotation profile, making a working interface dynamo model is markedly trickier than

if only a radial shear is operating, as in the Cartesian models discussed earlier

(see Charbonneau and MacGregor 1997; Markiel and Thomas 1999; Zhang et al.

2003a). Panel a of Fig. 8 shows a butterfly diagram for a numerical interface

solution with CX ¼ 2:5� 105, Ca ¼ þ10, and a core-to-envelope diffusivity

contrast Dg ¼ 10�2. The poleward propagating equatorial branch is what one

would expect from the combination of positive radial shear and positive a-effect
according to the Parker–Yoshimura sign rule.10 Here the a-effect is (artificially)

10 For this particular choice of a, g, and X profiles, solutions with negative Ca are non-oscillatory in most

of the ½Ca;CX;Dg parameter space, as in the interface dynamo solutions presented in Markiel and

Thomas (1999).
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concentrated towards the equator, by imposing a latitudinal dependency a
 sinð4hÞ
for p=4� h� 3p=4, and zero otherwise.

The model does achieve the kind of toroidal field amplification one would like to

see in interface dynamos. This can be seen in Panel b of Fig. 8, which shows radial

cuts of the toroidal field taken at latitude p=8, and spanning half a cycle. Notice how

the toroidal field peaks below the core–envelope interface (vertical dotted line), well

below the a-effect region and near the peak in radial shear. Panel c of Fig. 8 shows

how the ratio of peak toroidal field below and above rc varies with the imposed

diffusivity contrast Dg. The dashed line is the dependency expected from Eq. (47).

For relatively low diffusivity contrast, �1:5� logðDgÞ.0, both the toroidal field

ratio and dynamo period increase as 
ðDgÞ�1=2
. Below logðDgÞ
 � 1:5, the

maxðBÞ-ratio increases more slowly, and the cycle period falls, contrary to

expectations for interface dynamos (see, e.g., MacGregor and Charbonneau 1997).

(A)

(B) (C)

(D)

Fig. 8 A representative interface dynamo model in spherical geometry. This solution has

CX ¼ 2:5� 105, Ca ¼ þ10, and a core-to-envelope diffusivity contrast of 10�2. Panel a shows a
sunspot butterfly diagram, and Panel b a series of radial cuts of the toroidal field at latitude 15�. The
(normalized) radial profiles of magnetic diffusivity, a-effect, and radial shear are also shown, again at
latitude 15�. The core–envelope interface is again at r=R	 ¼ 0:7 (dotted line), where the magnetic
diffusivity varies near-discontinuously. Panels c and d show the variations of the core-to-envelope peak
toroidal field strength and dynamo period with the diffusivity contrast, for a sequence of otherwise
identical dynamo solutions
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This is basically an electromagnetic skin-depth effect; the cycle period is such that

the poloidal field cannot diffuse as deep as the peak in radial shear in the course of a

half cycle. The dynamo then runs on a weaker shear, thus yielding a smaller field

strength ratio and weaker overall cycle.

4.3.3 Critical assessment

The great success of interface dynamos remains their ability to evade a-quenching
even in its ‘‘strong’’ formulation, and so produce equipartition or perhaps even

super-equipartition mean toroidal magnetic fields immediately beneath the core–

envelope interface. They represent the only variety of dynamo models formally

based on mean-field electrodynamics that can achieve this without additional

physical effects introduced into the model. All of the uncertainties regarding the

calculations of the a-effect and magnetic diffusivity carry over from aX to interface

models, with diffusivity quenching becoming a particularly sensitive issue in the

latter class of models (see, e.g., Tobias 1996).

Interface dynamos suffer acutely from ‘‘structural fragility’’. A given model’s

dynamo behavior often end up depending sensitively on what one would normally

hope to be minor details of the model’s formulation. For example, the interface

solutions of Fig. 8 are found to behave very differently if the a-effect region is

displaced slightly upwards, or assumes other latitudinal dependencies. Moreover, as

exemplified by the calculations of Mason et al. (2008), this sensitivity carries over

to models in which the coupling between the two source regions is achieved by

transport mechanisms other than diffusion. This sensitivity is exacerbated when a

latitudinal shear is present in the differential rotation profile; compare, e.g., the

behavior of the Ca [ 0 solutions discussed here to those discussed in Markiel and

Thomas (1999). Often in such cases, a mid-latitude aX dynamo mode, powered by

the latitudinal shear within the tachocline and envelope, interferes with and/or

overpowers the interface mode [see also Dikpati et al. (2005)]. Because of this

structural fragility, interface dynamo solutions also end up being annoyingly

sensitive to choice of time-step size, spatial resolution, and other purely numerical

details. From a modelling point of view, interface dynamos lack robustness.

4.4 Including meridional circulation: flux transport dynamos

Meridional circulation is as unavoidable as differential rotation in turbulent,

compressible rotating convective shells (see Featherstone and Miesch 2015,

and references therein). Long considered unimportant from the dynamo point of

view, meridional circulation has gained popularity in recent years, initially in the

Babcock–Leighton context but now also in other classes of models.

Accordingly, we now add a steady meridional circulation to our basic aX models

of Sect. 4.2. The convenient parametric form developed by van Ballegooijen and

Choudhuri (1988) is used here and in all later illustrative models including

meridional circulation (Sects. 4.5 and 5). This ‘‘minimal’’ parameterization defines

a steady quadrupolar circulation pattern, with a single flow cell per quadrant

extending from the surface down to a depth rb. Circulation streamlines are shown in
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Fig. 4c; the flow is poleward in the outer convection zone, with an equatorial return

flow peaking slightly above the core–envelope interface, and rapidly vanishing

below.

The inclusion of meridional circulation in the non-dimensionalized aX dynamo

equations leads to the appearance of a new dimensionless quantity, again a magnetic

Reynolds number, but now based on an appropriate measure of the meridional

circulation speed u0 and turbulent diffusivity gT:

Rm ¼ u0R	
gT

: ð48Þ

Using the value u0 ¼ 1500 cm s�1 from observations of the poleward surface

meridional flow leads to Rm ’ 200, again with gT ¼ 5� 1011 cm2 s�1. In the solar

cycle context, using higher values of Rm thus implies proportionally lower turbulent

diffusivities.

4.4.1 Representative results

Meridional circulation can bodily transport the dynamo-generated magnetic field

[terms labeled ‘‘transport’’ in Eqs. (8, 9)], and therefore, for a (presumably) solar-

like equatorward return flow that is vigorous enough—in the sense of Rm being

large enough—overpower the Parker–Yoshimura propagation rule (see, e.g. Choud-

huri et al. 1995; Küker et al. 2001; Pipin and Kosovichev 2011a). The behavioral

turnover from dynamo wave-like solutions to circulation-dominated magnetic field

transport sets in when the circulation speed becomes comparable to the propagation

speed of the dynamo wave. In the circulation-dominated regime, the cycle period

loses sensitivity to the assumed turbulent diffusivity value, and becomes determined

primarily by the circulation’s turnover time. Models achieving equatorward

propagation of the deep toroidal magnetic component in this manner are now often

called flux-transport dynamos (see Dikpati and Gilman 2009; Karak et al. 2014, and

references therein).

With a solar-like differential rotation profile, however, once again the situation is

far more complex. Starting from the most basic aX dynamo solution with a
 cos h
(Fig. 7a), new solutions are now recomputed, this time including meridional

circulation. An animation of a typical solution is shown in Fig. 9, and a sequence of

time–latitude diagrams for four increasing values of the circulation flow speed, as

measured by Rm, are plotted in Fig. 10.

At Rm ¼ 50, little difference is seen with the circulation-free solutions (cf.

Fig. 7a), except for an increase in the cycle frequency, due to the Doppler shift

experienced by the equatorwardly propagating dynamo wave (Roberts and Stix

1972). At Rm ¼ 100 (part B), the cycle frequency has further increased and the

poloidal component produced in the high-latitude region of the tachocline is now

advected to the equatorial regions on a timescale becoming comparable to the cycle

period, so that a cyclic activity, albeit with a longer period, becomes apparent at low

latitudes. At Rm ¼ 103 (panel c and animation in Fig. 9) the dynamo mode now

peaks at mid-latitude, a consequence of the inductive action of the latitudinal shear,
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Fig. 9 Meridional plane animations for an aX dynamo solutions including meridional circulation. With

Rm ¼ 103, this solution is operating in the advection-dominated regime as a flux-transport dynamo. The
corresponding time–latitude ‘‘butterfly’’ diagram is plotted in Fig. 10c below. Color-coding of the
toroidal magnetic field and poloidal fieldlines as in Fig. 6. For an accompanying movie, see the
supplementary material section below

(A)

(B)

(C)

(D)

Fig. 10 Time–latitude ‘‘butterfly’’ diagrams for the a-quenched aX solutions depicted earlier in Panel a
of Fig. 7, except that meridional circulation is now included, with a Rm ¼ 50, b Rm ¼ 100, c

Rm ¼ 1000, and d Rm ¼ 2000. For the turbulent diffusivity value adopted here, gT ¼ 5� 1011 cm2 s�1,
Rm ¼ 200 would corresponds to a solar-like circulation speed
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favored by the significant stretching experienced by the poloidal fieldlines as they

get advected equatorward. At Rm ¼ 2000 the original high latitude dynamo mode

has all but vanished, and the mid-latitude mode is dominant. The cycle period is

now set primarily by the turnover time of the meridional flow; this is the telltale

signature of flux-transport dynamos.

All this may look straightforward, but it must be emphasized that not all dynamo

models with solar-like differential rotation behave in this (relatively) simple

manner. For example, the Ca ¼ �10 solution with a
 sin2 h cos h (Fig. 7c) transits

to a steady mode as Rm increases above 
 102. Moreover, the sequence of

a
 cos h shown in Fig. 10 actually presents a narrow window around Rm
 200

where the dynamo is decaying, due to a form of destructive interference between the

high-latitude aX mode and the mid-latitude advection-dominated dynamo mode that

emerges at higher values of Rm. Qualitatively similar results were obtained

by Küker et al. (2001) using different prescriptions for the a-effect and solar-like

differential rotation (see in particular their Fig. 11; also Rüdiger and Elstner 2002;

Bonanno et al. 2003).

When transport by turbulent pumping is included (see Käpylä et al. 2006b), aX
models including meridional circulation can provide time–latitude ‘‘butterfly’’

diagrams that are closer to solar-like, even without an equatorward return flow in the

deep convection zone (Pipin and Kosovichev 2013).

Even if the meridional flow is too slow—or the turbulent magnetic diffusivity too

high—to force the dynamo model in the advection-dominated regime, being much

faster at the surface the poleward flow can dominate the spatio-temporal evolution

of the radial surface magnetic field. For the dynamo solutions of Fig. 10, at low

circulation speeds (Rm.50) the spatiotemporal evolution of the surface radial field

is simply a diffused imprint of the equatorward drift of the deep-seated toroidal

field. At higher circulation speeds, however, the surface magnetic field is swept

instead towards the pole becoming strongly concentrated and amplified there for Rm

exceeding a few hundreds.

4.4.2 Critical assessment

From the modelling point-of-view, in the kinematic regime at least the inclusion of

meridional circulation yields a much better fit to observed surface magnetic field

evolution, as well as a robust setting of the cycle period. Whether it can provide an

equally robust equatorward propagation of the deep toroidal field is less clear. The

results presented here in the context of mean-field aX models suggest a rather

complex overall picture, and in interface dynamos the cartesian solutions obtained

by Petrovay and Kerekes (2004) even suggest that dynamo action can be severely

hindered. Yet, in other classes of models discussed below (Sects. 4.5 and 5),

circulation does have this desired effect.

On the other hand, dynamo models including meridional circulation tend to

produce surface polar field strength largely in excess of observed values, unless

magnetic diffusion is significantly enhanced in the surface layers, and/or field

submergence takes place very efficiently. This is a direct consequence of magnetic
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flux conservation in the converging poleward flow. This situation carries over to the

other types of models to be discussed in Sects. 4.5 and 5, unless additional

modelling assumptions are introduced (e.g., enhanced surface magnetic diffusivity,

see Dikpati et al. 2004), or if a counterrotating meridional flow cell is introduced in

the high latitude regions (Dikpati et al. 2004; Jiang et al. 2009), a feature that has

actually been detected in surface Doppler measurements as well as helioseismically

during cycle 22 (Haber et al. 2002; Ulrich and Boyden 2005).

A more fundamental and potential serious difficulty harks back to the kinematic

approximation, whereby the form and speed of up is specified a priori. Meridional

circulation is a relatively weak flow in the bottom half of the solar convective

envelope (see Miesch 2005), and the stochastic fluctuations of the Reynolds stresses

powering it are expected to lead to strong spatiotemporal variations, an expectation

verified by both analytical models (Rempel 2005) and numerical simulations

(Miesch 2005; Passos et al. 2017). The ability of the meridional flow to merrily

advect equipartition-strength magnetic fields should not be taken for granted (but do

see Rempel 2006a, b).

Before leaving the realm of mean-field dynamo models it is worth noting that

many of the conceptual difficulties associated with calculations of the a-effect and
turbulent diffusivity are not unique to the mean-field approach, and in fact carry

over to all models discussed in the following sections. In particular, to operate

properly all of the upcoming solar dynamo models require the presence of a strongly

enhanced magnetic diffusivity, presumably of turbulent origin, at least in the

convective envelope. In this respect, the rather low value of the turbulent magnetic

diffusivity needed to achieve high enough Rm in flux transport dynamos is also

somewhat problematic, since the corresponding turbulent diffusivity ends up at least

one order of magnitude smaller than the (uncertain) mean-field estimates. However,

the model calculations of Muñoz-Jaramillo et al. (2011) indicate that magnetic

diffusivity quenching may offer a viable solution to this latter quandary.

4.5 Models based on HD and MHD instabilities

The various rotationally-influenced hydrodynamical and magnetohydrodynamical

instabilities described in Sect. 3.2.3 have been invoked as T ! P inductive

mechanisms that can, usually acting in conjunction with rotational shear, form the

basis of viable solar cycle models. These models are all mean-field-like, in the sense

that the axisymmetric mean-field dynamo equations (38)–(39) are solved, usually in

their aX form and sometimes including a meridional flow, with mean-field turbulent

diffusivity also implicitly invoked. The inductive action of the chosen instability is

parametrized by a source term replacing the a-effect (see, e.g., Ferriz-Mas et al.

1994; Dikpati and Gilman 2001; Ossendrijver 2000a).
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4.5.1 Hydrodynamical shear instabilities

Perhaps the most thoroughly studied class of instability-based models is that relying

on the shear instability of the latitudinal shear within the tachocline (Dikpati and

Gilman 2001; Dikpati et al. 2004). The resulting ‘‘tachocline a-effect’’ ends up

proportional to the longitudinally-averaged kinetic helicity of the hydrodynamical

instability planform, the latter computed in the framework of shallow-water theory.

The Dikpati and Gilman (2001) dynamo model is of the flux transport variety, with

the advective action of the deep meridional flow setting equatorward propagation of

the deep toroidal field; it uses a solar-like differential rotation, depth-dependent

magnetic diffusivity and meridional circulation pattern much similar to those shown

in Fig. 4 herein. The usual ad hoc a-quenching formula [cf. Eq. (29)] is introduced

as the sole amplitude-limiting nonlinearity.

The model can be adjusted to yield equatorward propagating dominant activity

belts, solar-like cycle periods, and correct phasing between the surface polar field

and the tachocline toroidal field. These features can be traced primarily to the

advective action of the meridional flow. It also yields the correct solution parity, and

is self-excited. Its primary weakness, in its present form, is the reliance on a linear

stability analysis that altogether ignores the known destabilizing effect of magnetic

fields (see, e.g., Gilman and Fox 1997; Zhang et al. 2003b). Progress has been made

in studying non-linear development of both the hydrodynamical and MHD versions

of the shear instability (see Cally 2001; Cally et al. 2003; Dikpati et al. 2009), so

that the needed improvements on the dynamo front are potentially forthcoming.

4.5.2 Instability of sheared magnetic layers

Dynamo models relying on the buoyant instability of sheared magnetized layers

have been presented in Thelen (2000b), the layer being identified with the

tachocline. Here also the resulting azimuthal electromotive force is parameterized as

a mean-field-like a-effect, introduced into the standard aX dynamo equations. The

model is nonkinematic, in that it includes the magnetic backreaction on the large-

scale, purely radial velocity shear within the layer. The analysis of Thelen (2000a)

indicates that the a-effect is negative in the upper part of the shear layer. Cyclic

solutions are found in substantial regions of parameter space, and the solutions

exhibit migratory wave patterns compatible with the Parker–Yoshimura sign rule.

These models are not yet at the stage where they can be meaningfully compared

with the solar cycle. They do have a number of attractive features, including their

ability to operate in the strong field regime (see also Chatterjee et al. 2011).

4.5.3 Buoyant instability of magnetic flux tubes

Dynamo models relying on the non-axisymmetric buoyant instability of toroidal

magnetic fields were first proposed by Schmitt (1987), and further developed

by Ferriz-Mas et al. (1994); Schmitt et al. (1996) and Ossendrijver (2000a, b) for

the case of toroidal flux tubes. Working in the framework of the thin-flux tube

approximation (Spruit 1981), it is possible to construct ‘‘stability diagrams’’ taking
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the form of growth rate contours in a parameter space comprised of flux tube

strength, latitudinal location, depth in the overshoot layer, etc. One such diagram,

taken from Ferriz-Mas et al. (1994), is reproduced in Fig. 11. Dynamo action is

possible when the instability is weak (growth rates J1 year). In the case shown in

Fig. 11, these regions are restricted to flux tube strengths in the approximate range

60–150 kG. The correlation between the flow and field perturbations is such as to

yield a mean azimuthal electromotive force operationally equivalent to a positive a-
effect in the N-hemisphere (Ferriz-Mas et al. 1994; Brandenburg and Schmitt

1998).

This dynamo mechanism operates without difficulty in the strong field regime (in

fact it requires strong fields to operate). Difficulties include the need of a relatively

finely tuned magnetic diffusivity to achieve a solar-like dynamo period, and a finely

tuned level of subadiabaticity in the overshoot layer for the instability to turn on at

the appropriate toroidal field strengths (compare Figs. 1 and 2 in Ferriz-Mas et al.

1994). Because the instability model predicts a positive a-effect-like poloidal source
term in the Northern hemisphere, equatorward propagation of the low latitude deep

toroidal field would require the addition of a meridional flow, as it does in true

mean-field models with positive a-effect (cf. Sect. 4.4).

5 Babcock–Leighton models

Solar cycle models based on what is now called the Babcock–Leighton mechanism

were first proposed by Babcock (1961) and further elaborated by Leighton

(1964, 1969), yet they were all but eclipsed by the rise of mean-field electrody-

namics in the mid- to late 1960s. Their revival was motivated not only by the

mounting difficulties with mean-field models alluded to earlier, but also by the fact

that synoptic magnetographic monitoring over sunspot cycles 21 and 22 gave strong

evidence that the surface polar field reversals are indeed triggered by the decay of

III
I

II

Fig. 11 Stability diagram for toroidal magnetic flux tubes located in the overshoot layer immediately
beneath the core–envelope interface. The plot shows contours of growth rates in the latitude-field strength
plane. The gray scale encodes the azimuthal wavenumber of the mode with largest growth rate, and
regions left in white are stable. Dynamo action is associated with the regions with growth rates 
 1 year,
here labeled I and II (diagram kindly provided by A. Ferriz-Mas)
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active regions (see Wang et al. 1989; Wang and Sheeley 1991; Mackay and Yeates

2012, and references therein).

5.1 The tilts of bipolar active regions

Consider a bipolar magnetic region (BMR) of (unsigned) magnetic flux U emerging

at latitude k, with angular separation d between the two magnetic poles, and the line

joining them making an tilt angle a with respect to the E–W direction. Spherical

harmonic decomposition of such a surface magnetic flux distribution includes an

axisymetric dipole contribution (l ¼ 1;m ¼ 0) given by:

dD ¼ 3d cos k
4pR2

U sin a: ð49Þ

with the sign of U corresponding to that of the trailing polarity. This expression

quantifies the T ! P process in a Babcock–Leighton dynamo, with the formerly

(i.e., prior to destabilisation and emergence) toroidal flux U in a BMR providing a

contribution to the ultimate dipole building up at the end of the cycle that is

proportional to its associated dD. The quantities U, d and a are all accessible

observationally from magnetograms. The tilt angle a emerges as a key quantity.

Observationally, upon averaging over many BMRs the mean tilt is found to increase

with latitude, a relationship known as Joy’s Law. Leighton (1969) parameterized it

as:

sin a ¼ 0:5 sin k; ð50Þ

but other closely related functional forms have also been proposed (see Wang and

Sheeley 1991; McClintock and Norton 2013; Pevtsov et al. 2014; Senthamizh Pavai

et al. 2015, and references therein). Substantial scatter exists about this mean

relationship, at a level increasing with decreasing magnetic flux of emerging BMRs.

This indicates that the Babcock–Leighton mechanism is characterized by high

stochastic variability.

The form of Eq. (49) suggests that for fixed U and d, BMRs emerging at at high

latitudes make the highest contribution to the ultimate dipole. This is however not

the case, as the latter is also influenced by surface flux transport processes

(viz. Fig. 12 and Sect. 5.2 immediately below). Surface flux transport simulations

reveal that for solar-like surface meridional flow profiles, BMRs emerging close to

the equator contribute the most to the ultimate dipole, because they undergo greater

cross-equatorial diffusive cancellation of leading polarity flux (see,e.g., DeVore

et al. 1984; Cameron et al. 2013; Jiang et al. 2014).

A robust prediction of numerical simulations of buoyantly rising thin magnetic

flux tubes is that at a given emergence latitude, the tilt with respect to the East-West

direction they acquire prior to emergence decreases with increasing magnetic

strength of the rope (Fan 2009; Weber et al. 2013, and references therein). This

occurs because more strongly magnetized flux ropes rise more rapidly through the

convection zone, leaving less time for the Coriolis force to act on the secondary flow

developing along the axis of the rope and impart to it the twist that, upon
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emergence, reproduces Joy’s Law (Fan et al. 1993; D’Silva and Choudhuri 1993;

Caligari et al. 1995; Weber et al. 2011). Since the contribution to the total dipole

moment of an emerging BMR is proportional to this tilt angle (viz. Eq. (49) above),

this suggests that the Babcock–Leighton mechanism of poloidal field regeneration

becomes quenched beyond field strengths of 
 105 G.

A number of studies have attempted to extract trends in tilt angle statistics with

the amplitude of the sunspot cycle (e.g., Dasi-Espuig et al. 2010; Stenflo and

Kosovichev 2012; Li and Ulrich 2012; McClintock and Norton 2013; Tlatova et al.

2018). Globally, the tilt reduction effect is marginally present, and more pronounced

in some cycles and/or hemispheres than others (see Sect. 6 of Pevtsov et al. 2014,

for further discussion).

Admittedly, there are many ill-understood physical steps between the diffuse

magnetic field produced by the dynamo —of whichever variety—and the magnetic

strength B0 and flux U of BMR-forming toroidal flux ropes. Nonetheless, many

kinematic axisymetric models of Babcock–Leighton dynamo incorporate a

quenching of their poloidal source terms in Eq. (38) as a function of the internal

toroidal field strength B. In fact, the algebraic a-quenching parametrization (29) is

commonly used even though tilt quenching has nothing to do with the turbulent

electromotive force. Again, it is a computationally friendly nonlinearity that simply

‘‘does the right thing’’.

Thin flux tube simulations also indicate that for flux ropes of strength inferior to a

few 104 G, turbulent convection entrains the rising magnetic flux ropes too violently

for a systematic Joy’s-Law-like tilt pattern to materialize; the Babcock–Leighton

mechanism is thus also subject to a lower operating threshold, so that the associated

dynamos are not self-excited, i.e., they cannot amplify an arbitrarily weak seed

magnetic field.

5.2 Surface magnetic flux transport and the Babcock–Leighton mechanism

The magnetic flux liberated in the photosphere upon the decay of BMRs at low

latitudes must find its way to polar regions in order to complete the T ! P step of

the dynamo loop. Surface flux transport (SFT) simulations solve the r-component of

the magnetic induction equation (1) on a spherical surface corresponding to the solar

photosphere. In the vast majority of SFT implementations (e.g., DeVore et al. 1984;

Wang et al. 1989; Baumann et al. 2004; Jiang et al. 2014; Lemerle et al. 2015;

Virtanen et al. 2017; Whitbread et al. 2017) the large-scale radial magnetic field

component is assumed to be passively advected by the (axisymmetric) surface

differential rotation and poleward meridional flow, while undergoing diffusive

dispersal by unresolved convective flows (see Schrijver et al. 2002; Upton and

Hathaway 2014b, for more realistic approaches to advection by convective flows).

With proper parameter tuning, such models can reproduce quite well the observed

spatiotemporal evolution of synoptic magnetograms.

Figure 12 shows results of a SFT simulation by Lemerle et al. (2015) of surface

magnetic flux evolution throughout activity cycle 21 (1976–1986), using observed

active region emergences as input.
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The bottom panel is grayscale rendering of the (zonally-averaged) synoptic

magnetogram for the radial magnetic component, the simulated equivalent of the

first cycle plotted on Fig. 3. The salt-and-pepper pattern at low latitudes reflects the

emergence of bipolar magnetic regions, which do not zonally average out to zero

here because of their tilt with respect to the East-West direction. The poleward

transport of the trailing polarity shows up as slanded streaks, black (negative Br) in

the Northern hemisphere and white (positive Br) in the South. This eventually leads

to the reversal of the positive dipole moment of the initial condition, occuring here

about 5 years after the beginning of the simulation. This is followed by the buildup

of the negative dipole, peaking close to the end of the simulation at polar field

strength ’ 5G.

A different view of the dipole buildup is presented on the top panel of Fig. 12,

showing latitudinal cuts of the zonally-averaged surface radial magnetic field spaced

25 months apart, as color-coded. Note the steep cross-equatorial gradient in Br

building up and sustained throughout the rising and maximum phases of the sunspot

cycle, the signature of diffusive cancellation of the leading polarity flux.

5.3 Magnetic flux transport

An important feature of solar cycle models based on the Babcock–Leighton

mechanism is that the two substeps of the dynamo loop are segregated spatially; the

P ! T step is driven by rotational shear somewhere within the solar convection

zone, as in the mean-field models considered in Sect. 4; whereas the T ! P step

Fig. 12 A surface flux transport simulation showing the Babcock–Leighton mechanism in action, in
response to emergence of bipolar magnetic regions in the course of activity cycle 21 (1976–1986). The
bottom panel shows the corresponding magnetic butterfly diagram, with the vertical lines flagging the five
epochs at which the temporal cuts are plotted on the top panel. The grayscale is saturated at �5G to better
emphasize the poleward transport at mid-latitudes. Surface flux evolution simulation taken from Lemerle
et al. (2015), using as input the cycle 21 active region emergence database of Wang et al. (1989)
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takes place at photospheric levels. These two source regions must be coupled for a

working dynamo loop to ensue. Meridional flows can provide the needed transport

mechanism, acting as a ‘‘conveyor belt’’ dragging the surface field to the polar

regions, then radially inward, then equatorward at the base of the convective

envelope, where rotational shear can generate the strong toroidal fields that will give

rise to emerging bipolar active regions in the next cycle. Coupling can also be

mediated by magnetic diffusion or turbulent pumping, the latter potentially quite

efficient in subsurface layers.

Babcock–Leighton solar cycle models are often characterized as ‘‘advection-

dominated’’, when meridional flow mediates transport, or ‘‘diffusion-dominated’’

when magnetic diffusion dominates transport within the convection zone (Yeates

et al. 2008). The distinction hinges on the assumed value for the turbulent

diffusivity, which effectively sets the value of the magnetic Reynolds number (see

Eq. 48) governing the relative importance of advection by the meridional flow in the

mean-field dynamo equations (38)–(39).

5.4 Axisymmetric kinematic mean-field-like models

The most straightforward approach in building a Babcock–Leighton solar cycle

model is to adopt the aX form of the kinematic mean-field axisymmetric dynamo

equations (38)–(39), and replace a-term in (38) by a suitably designed axisymmetric

source term designed to capture the T ! P workings of the Babcock–Leighton

mechanism.

5.4.1 Formulation of a poloidal source term

The first post-helioseismic dynamo model based on the Babcock–Leighton

mechanism is due to Wang et al. (1991); these authors developed a coupled two-

layer model (2� 1D), where a poloidal source term is introduced in the upper

(surface) layer, and made linearly proportional to the toroidal field strength at the

corresponding latitude in the bottom layer (on such 2-layer models, see

also Cameron and Schüssler 2017a). A similar non-local approach was later used

by Dikpati and Charbonneau (1999), Charbonneau et al. (2005), Guerrero and

de Gouveia Dal Pino (2008), Hotta and Yokoyama (2010), Kitchatinov and Olem-

skoy (2012) and Olemskoy and Kitchatinov (2013). These kinematic 2D axisym-

metric model implementation all use solar-like differential rotation and meridional

flow profiles similar to Fig. 4 herein. The otherwise much similar implementation

of Nandy and Choudhuri (2001, 2002), Chatterjee et al. (2004) and Jiang et al.

(2007), on the other hand, use a mean-field-like local source term, concentrated in

the upper layers of the convective envelope and operating in conjunction with a

‘‘buoyancy algorithm’’ whereby toroidal fields located at the core–envelope

interface are locally removed and deposited in the surface layers when their

strength exceeds some preset threshold. The implementation developed by Durney

(1995) is probably closest to the essence of the Babcock–Leighton mechanism (see

also Durney et al. 1993; Durney 1996, 1997; Muñoz-Jaramillo et al. 2010);

whenever the deep-seated toroidal field exceeds some preset threshold, an
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axisymmetric ‘‘double ring’’ of vector potential is deposited in the surface layer, and

left to spread latitudinally under the influence of magnetic diffusion. As shown

by Muñoz-Jaramillo et al. (2010), this formulation, used in conjunction with the

axisymmetric models discussed in what follows, also leads to a good reproduction

of the observed synoptic evolution of surface magnetic flux.

In all cases the poloidal source term is concentrated in the outer convective

envelope, and, in the language of mean-field electrodynamics, amounts to a positive

a-effect, in that a positive dipole moment is being produced from a positive deep-

seated mean toroidal field. Most aforecited model implementations introduce an

algebraic a-quenching-like upper operating threshold on the toroidal field strength.

The Durney (1995), Nandy and Choudhuri (2001) and Charbonneau et al. (2005)

implementations also have a lower operating threshold, as suggested by thin flux

tubes simulations.

5.4.2 Representative results

Figure 13 is a meridional plane animation of a representative Babcock–Leighton

dynamo solution computed following the model implementation of Charbonneau

et al. (2005). The equatorward advection of the deep toroidal field by meridional

circulation is here clearly apparent. Note also how the surface poloidal field first

builds up at low latitudes, and is subsequently advected poleward and concentrated

near the pole.

Figure 14 shows N-hemisphere time–latitude diagrams for the toroidal magnetic

field at the core–envelope interface (Panel a), and the surface radial field (Panel b),

for a Babcock–Leighton dynamo solution now computed following the closely

similar model implementation of Dikpati and Charbonneau (1999). Note how the

polar radial field changes from negative (blue) to positive (red) at just about the time

of peak positive toroidal field at the core–envelope interface; this is the phase

relationship inferred from synoptic magnetograms (see, e.g., Fig. 3 herein) as well

as observations of polar faculae (see Sheeley 1991).

Although it exhibits the desired equatorward propagation, the toroidal field

butterfly diagram in Panel a of Fig. 14 peaks at much higher latitude (
 45�) than
the sunspot butterfly diagram (
 15�–20�, cf. Fig. 2). This occurs because this is a
solution with high magnetic diffusivity contrast, where meridional circulation closes

at the core–envelope interface, so that the latitudinal component of differential

rotation dominates the production of the toroidal field, a situation that persists in

models using more realistic differential rotation profiles taken from helioseismic

inversions (see Muñoz-Jaramillo et al. 2009). This difficulty can be alleviated by

letting the meridional circulation penetrate deeply below the core–envelope

interface. Solutions with such flows are presented, e.g., in Nandy and Choudhuri

(2001, 2002). These latter authors have argued that this is in fact essential for a
solar-like butterfly diagram to materialize, but this conclusion appears to be model-

dependent at least to some degree (Guerrero and Muñoz 2004; Guerrero and

de Gouveia Dal Pino 2007; Muñoz-Jaramillo et al. 2009). From the hydrodynam-

ical standpoint, the boundary layer analysis of Gilman and Miesch (2004) (see

also Rüdiger et al. 2005) indicates no significant penetration below the base of the
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Fig. 13 Meridional plane animation of a representative Babcock–Leighton dynamo solution
from Charbonneau et al. (2005). Color coding of the toroidal field and poloidal fieldlines as in Fig. 6.
This solution uses the same differential rotation, magnetic diffusivity, and meridional circulation profile
as for the advection-dominated aX solution of Sect. 4.4, but now with the non-local surface source term
(red line on Fig. 4a), as formulated in Charbonneau et al. (2005), and parameter values Ca ¼ 5,

CX ¼ 5� 104, Dg ¼ 0:003, Rm ¼ 840. Note again the strong amplification of the surface polar fields,
and the latitudinal stretching of poloidal fieldlines by the meridional flow at the core–envelope interface.
For an accompanying movie, see the supplementary material section below

(A)

(B)

Fig. 14 Time–latitude diagrams of the toroidal field at the core–envelope interface (Panel a), and radial
component of the surface magnetic field (Panel b) in a Babcock–Leighton model of the solar cycle. This
solution is computed for solar-like differential rotation and meridional circulation, the latter here closing
at the core–envelope interface. The core-to-envelope contrast in magnetic diffusivity is Dg ¼ 1=300, the

envelope diffusivity gT ¼ 2:5� 1011 cm2 s�1, and the (poleward) mid-latitude surface meridional flow

speed is u0 ¼ 16m s�1. Figure produced from numerical data kindly provided by M. Dikpati
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convective envelope, although this conclusion has not gone unchallenged (see Ga-

raud and Brummell 2008), leaving the whole issue somewhat muddled at this

juncture. The present-day observed solar abundances of Lithium and Beryllium

restrict the penetration depth to r=R ’ 0:62 (Charbonneau 2007a), which is

unfortunately too deep to pose stringent constraints on dynamo models. The final

word will likely come from helioseismology, hopefully in the not too distant future.

A noteworthy property of this class of model is the dependency of the cycle

period on model parameters; in the advection dominated regime, the meridional

flow speed is found to be the primary determinant of the cycle period P. For
example, in the Dikpati and Charbonneau (1999) model, this quantity is found to

scale as

P ¼ 56:8 u�0:89
0 s�0:13

0 g0:22T ½years: ð51Þ

This behavior arises because, in these models, the two source regions are spatially

segregated, and the time required for circulation to carry the poloidal field generated

at the surface down to the tachocline is what effectively sets the cycle period. The

corresponding time delay introduced in the dynamo process has rich dynamical

consequences, to be discussed in Sect. 7.2.4 below. The weak dependency of P on

gT and on the magnitude s0 of the poloidal source term11 is very much unlike the

behavior typically found in mean-field models, where both these parameters usually

play a dominant role in setting the cycle period.

Interesting variations on the above model follow from the inclusion of turbulent

pumping (Guerrero and de Gouveia Dal Pino 2008; Karak and Nandy 2012; Jiang

et al. 2013; Karak et al. 2014; Hazra and Nandy 2016; Karak and Cameron 2016).

With the expected downward pumping throughout the bulk of the convective

envelope, and with a significant equatorward latitudinal component at low latitudes,

the Babcock–Leighton mechanism can lead to dynamo action even if the internal

meridional flow is weak and/or constrained to the upper portion of the convective

envelope. Downward turbulent pumping then links the two sources regions, and

latitudinal pumping provides the needed equatorward concentration of the deep-

seated toroidal component. An example taken from Guerrero and de Gouveia

Dal Pino (2008) is shown in Fig. 15. In this specific solution the circulation

penetrates only down to r=R ¼ 0:8, and the radial and latitudinal peak pumping

speed are cr0 ¼ 0:3m s�1 and ch0 ¼ 0:9m s�1, respectively.

With downward turbulent pumping now the primary mechanism linking the

surface and tachocline, the dynamo period loses sensitivity to the meridional flow

speeds, and becomes set primary by the radial pumping speed. Indeed the dynamo

solutions presented Guerrero and de Gouveia Dal Pino (2008) are found to obey a

scaling law of the form

P ¼ 181:2 u�0:12
0 c�0:51

r0 c�0:05
h0 ½years; ð52Þ

11 The parameter s0 in Eq. (51) is functionally analogous to the parameter a0 introduced in the mean-field

models of Sect. 4, and would replace it in defining a dynamo number equivalent to Eq. (40). Although the

terminology ‘‘Babcock–Leighton alpha-effect’’ is now common in the literature, my personal preference

is to restrict the term ‘‘alpha-effect’’ to the field-aligned turbulent inductive effect arising in mean-field

theory.
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over a fairly wide range of parameter values. The radial pumping speed cr0 emerges

here as the primary determinant of the cycle period. Finally, one can note in Fig. 15

that although in this model strong surface magnetic fields materialize at mid-lati-

tudes, the strong polar fields that usually characterizes Babcock–Leighton dynamo

solutions operating in the advection-dominated regime are no longer present (cf.

Fig. 14). This can be traced primarily to the efficient downward turbulent pumping

that subducts the poloidal field as it is carried poleward by the meridional flow.

5.4.3 Critical assessment

A serious weakness of most Babcock–Leighton models just discussed is their use of

a steady (kinematic), single-cell-per-quadrant meridional flow. Although helioseis-

mic inversions of the meridional flow are difficult in view of its low amplitude,

many inversions published in the last decade suggest mutiple flow cells in radius

(see Schad et al. 2013; Zhao et al. 2013; Jackiewicz et al. 2015; Böning et al.

2017), while others do not (e.g., Rajaguru and Antia 2015; Liang et al. 2018;

Mandal et al. 2018). In the advection-dominated regime, multi-cells circulation

patterns can lead to markedly different dynamo behavior (Bonanno et al. 2006;

Jouve and Brun 2007; Belucz et al. 2015), and can also have a profound impact on

the evolution of the surface magnetic field (Dikpati et al. 2004; Jiang et al. 2009).

On the other hand, the calculations of Hazra et al. (2014) indicate that as long as

Fig. 15 Time–latitude diagrams of the toroidal field at the core–envelope interface (Panel a), and radial
component of the surface magnetic field (Panel b) in a Babcock–Leighton model of the solar cycle with a
meridional flow restricted to the upper half of the convective envelope, and including (parametrized)
radial and latitudinal turbulent pumping. This is a solution from Guerrero and de Gouveia Dal Pino
(2008) (see their Sect. 3.3 and Fig. 5), but the overall modelling framework is almost identical to that
described earlier, and used to generate Fig. 14. The core-to-envelope contrast in magnetic diffusivity is

Dg ¼ 1=100, the envelope diffusivity gT ¼ 1011 cm2 s�1, and the (poleward) mid-latitude surface

meridional flow speed is u0 ¼ 13m s�1 (figure produced from numerical data kindly provided by
G. Guerrero)
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diffusion (or, presumably, turbulent pumping) acts sufficiently rapidly to couple

adjacent flow cells, a solar-like butterfly diagram still emerges as long as an

equatorial return flow is present at the core–envelope interface. Global hydrody-

namical and magnetohydrodynamical simulations of solar convection suggest that

such a deep equatorward return flow is likely a robust feature (see Passos et al.

2015, more on this in Sect. 6 below).

As with most mean-field models including meridional circulation published to

date, mean-field-like Babcock–Leighton dynamo models usually produce exces-

sively strong polar surface magnetic fields. While this difficulty can be alleviated by

increasing the magnetic diffusivity in the outermost layers, in the context of the

Babcock–Leighton models this leads to a much weaker poloidal field being

transported into the interior, which can be problematic from the dynamo point-of-

view. On this see Dikpati et al. (2004) for illustrative calculations, and Mason et al.

(2002) on the closely related issue of competition between surface and deep-seated

a-effect. Downward turbulent pumping may be a better option to reduce the strength

of the polar field without impeding dynamo action (but see also Jiang et al. 2007).

Because of the strong amplification of the surface poloidal field in the poleward-

converging meridional flow, Babcock–Leighton models tend to produce a signif-

icant—and often dominant—polar branch in the toroidal field butterfly diagram.

Many of the models explored to date tend to produce symmetric–parity solutions

when computed pole-to-pole over a full meridional plane (see, e.g., Dikpati and

Gilman 2001), but it is not clear how serious a problem this is, as relatively minor

changes to the model input ingredients may flip the dominant parity (see Chatterjee

et al. 2004; Charbonneau 2007b; Hotta and Yokoyama 2010, for specific examples).

Nonetheless, in the advection-dominated regime there is definitely a tendency for

the quadrupolar symmetry of the meridional flow to imprint itself on the dynamo

solutions. A related difficulty, in models operating in the advection-dominated

regime, is the tendency for the dynamo to operate independently in each solar

hemisphere, so that cross-hemispheric synchrony is lost (Charbonneau 2005, 2007b;

Chatterjee and Choudhuri 2006; Norton et al. 2014). Once again these difficulties

are alleviated somewhat by increasing the magnetic diffusivity.

Because the Babcock–Leighton mechanism is characterized by a lower operating

threshold, the resulting dynamo models are not self-excited. On the other hand, the

Babcock–Leighton mechanism is expected to operate even for toroidal fields

exceeding equipartition, the main uncertainties remaining the level of amplification

taking place when sunspot-forming toroidal flux ropes form from the dynamo-

generated mean magnetic field. The nonlinear behavior of this class of models, at

the level of magnetic backreaction on the differential rotation and meridional

circulation, remains largely unexplored (but see Hazra and Choudhuri 2017;

Inceoglu et al. 2017).

5.5 Beyond 2D: non-axisymmetric models

Some recent Babcock–Leighton solar cycle models abandon the axisymmetric

approximation, either by solving the problem in three spatial dimensions (Yeates

and Muñoz-Jaramillo 2013a; Miesch and Dikpati 2014; Miesch and Teweldebirhan
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2016; Hazra et al. 2017; Karak and Miesch 2017; Kumar et al. 2019; Whitbread

et al. 2019), or solving a (non-axisymmetric) surface magnetic flux evolution model

concurrently with a axisymmetric mean-field-like interior dynamo model (Lemerle

and Charbonneau 2017; Nagy et al. 2017). All of these dynamo models are still

kinematic (prescribed, time independent differential rotation and meridional flow),

and use a mean-field-like turbulent diffusivity. A parameterized prescription is

introduced to generate emergence of (tilted) bipolar magnetic regions in the surface

layers of the model, as a function of the internal distribution of magnetic fields. In

all these models emergences are randomly distributed in longitude, and amplitude

saturation is usually achieved by ad hoc algebraic quenching of either the tilt or flux

of emerging BMRs with increasing internal or magnetic field strength, thus limiting

the buildup of the surface dipole (viz. Eq. 49).

5.5.1 Modelling flux emergence

Moving to three spatial dimensions allows a more realistic representation of the

process of magnetic flux emergence. One approach , adopted in the simulations

of Miesch and Dikpati (2014) and Miesch and Teweldebirhan (2016), is to replace

the axisymmetric flux ring used in some mean-field-like 2D models by a truly 3D

magnetic flux ring inserted with an E–W tilt compatible with Joy’s Law. The

intersection of this ring with the surface of the simulation domain thus defines a

magnetic bipole, as in the conventional SFT simulations discussed in Sect. 5.2.

These rings are injected only when the internal toroidal component exceeds some

preset threshold.

Alternately, it is also possible to force magnetic flux emergence from the interior

to the surface by introducing short-lived and spatially localised vortical upflows

whenever and wherever the deep toroidal magnetic field exceeds a set threshold.

This is the approach introduced by Yeates and Muñoz-Jaramillo (2013b, see

also Kumar et al. 2019; Whitbread et al. 2019). The helicity of their prescribed

upflows is set to vary as the sine of latitude, and they adjust the amplitude of its

horizontal component so as to reproduce Joy’s Law (see their Fig. 9). Figure 16

illustrates the idea. In (a), two toroidal flux concentrations (white tubes), one in the

N-hemisphere and the other at the equator, have been acted upon each by its

prescribed vortical upflow for 25 days, at which point the upflows turn off. The

N-hemisphere emerging structure shows a E–W tilt consistent with Joy’s Law, a

direct consequence of the cyclonicity of the imposed upflow, while that emerging at

the equator does not (as expected).

Here the upflow is acting on the large-scale magnetic field, yet as can be seen on

panels (c) and (d) of Fig. 16, something akin to an X-loop is produced and even

develops an asymetry between the prograde and retrograde legs, as in thin flux tube

simulations. Such an approach also allows to capture with internal self-consistency

the (diffusive) disconnection of the rising loop from the underlying toroidal flux

system, without having to prescribe a ‘‘recipe’’ for magnetic flux loss in the deep

magnetic toroidal field (see Whitbread et al. 2019, for more on this matter).
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5.5.2 Representative results

Both modelling approaches to flux emergence described above can lead to viable

solar-like 3D kinematic dynamo simulations generating sustained magnetic cycles

characterized by regular magnetic polarity reversals and good hemispheric

synchrony. Figure 17 shows one example, taken from Karak and Miesch (2017).

This simulation run has an internal field strength threshold and latitudinal ‘‘mask’’ to

restrict emergences to low latitudes, includes downwards turbulent pumping in

Fig. 16 Magnetic flux emergence in the 3D Babcock–Leighton model of Yeates and Muñoz-Jaramillo
(2013b). In a, two toroial flux concentrations (in white) have been undergoing emergence. The red/blue
surfaces indicate the sign of the associated radial magnetic component, whose intersection with the
photosphere (panel b) generates a bipolar structure akin to a BMR. Panels c and d are equatorial plane
slices showing the rise and deformation of the emerging magnetic field, for the equatorial emergence
event structure in a. Image reproduced with permission from Yeates and Muñoz-Jaramillo (2013b),
copyright by the authors

(B)

(C)

(A)

Fig. 17 An extended dynamo run from the 3D Babcock–Leighton model of Karak and Miesch (2017)
(their simulation A6). The top panel shows the zonally-averaged surface radial magnetic field, the middle
panel the zonally-averaged toroidal magnetic field at r=R ¼ 0:72, and the bottom panel time series of the
polar cap (latitude [ 75�) mean magnetic field in the Northern (red) and Southern (blue) hemispheres.
Image reproduced with permission from Karak and Miesch (2017), copyright by AAS
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subsurface layers, and uses algebraic tilt quenching as the solar amplitude-limiting

nonlinearity. The top panel shows the zonally-averaged surface radial field, the

middle panel the zonally-averaged toroidal field at r=R ¼ 0:72, and the bottom

panel the polar cap magnetic field in the two hemispheres.

The magnetic cycle generated in this simulation is quite stable and maintains

good hemispheric synchrony, yet amplitude fluctuations are also clearly seen. It

occurs here because Karak and Miesch (2017) introduce a small random scatter

about Joy’s Law to their emerging flux rings. Because the peak polar flux is a small

(
 10�3) fraction of magnetic flux emerging in the course of a typical sunspot

cycle, even low variability in active region properties can lead to significant

amplitude variations in the surface dipole.

The solar cycle model of Lemerle and Charbonneau (2017) has been used

extensively to investigate the impact of variability in active region properties on the

magnetic cycle (Nagy et al. 2017; Labonville et al. 2019; Ölçek et al. 2019). This

model combines a 2D kinematic surface flux transport simulations with a kinematic

axisymmetric 2D dynamo model for the interior; the former provides the upper

boundary condition for the latter, and the internal magnetic field distribution of the

latter is used to generate active region emergences in the former. Physical

characteristics of emerging BMRs are drawn from statistical distributions

constructed from observational data (see Lemerle et al. 2015, also Jiang et al.

2011). The probability of emergence per timestep increases with internal toroidal

magnetic field strength, and is subjected to a lower threshold below which that

probability vanishes. Algebraic tilt quenching is the only amplitude-limiting

nonlinearity considered. Model parameters are formally optimized by minimizing

the difference between observed and simulated time–latitude ‘‘butterfly’’ patterns of

BMR emergences.

Figure 18 displays a segment of a solar cycle simulation generated with this

model, and covering 4 activity cycles (two full magnetic cycles). Many observed

solar features are reproduced, including the dipole reversal near the time of sunspot

cycle maximum, and a strong correlation between surface dipole strength at activity

minimum and the amplitude of the subsequent cycle. This specific segment, taken

from Nagy et al. (2017), exemplifies an event akin to the cycle 23–24 transition,

namely an ‘‘average’’ cycle followed by an extended minimum phase, starting here

at t ’ 2180 years, followed by a weak activity cycle showing strong hemispheric

asymetry.

This weak cycle can be traced to one large active region emerging near the

equator in the preceding cycle, at t ’ 2176 years, with strong deviation from Joy’s

Law: its trailing polarity is closer to the equator than its leading polarity. Artificial

removal of this single ‘‘rogue’’ active region leads to the pseudo-SSN time and

cFig. 18 Segment of a reference solar cycle solution from the Lemerle and Charbonneau (2017) 2� 2D
solar cycle model. Panel a shows a magnetic butterfly diagram, specifically the longitudinally-averaged
surface density of synthetic emergences, color-coded according to trailing magnetic polarity. Panel b is a
butterfly diagram of active region emergences, panel c a time series of smoothed pseudo-sunspot number,
and panel d a time series of the surface dipole moment. The dashed lines illustrate the evolution of a
parallel solution where one large near-equatorial active region emerging at t ’ 2176 years (vertical
dashed lines) is artificially removed from the simulation (see text). Adapted from Nagy et al. (2017)
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dipole time series plotted as dashed lines on the bottom two panels. The subsequent

cycle is still a bit weaker than average, but dipole reversal takes place sooner, the

extended minimum vanishes, and an average cycle amplitude is recovered one cycle

later.
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5.5.3 Critical assessment

In the kinematic (linear) regime, in terms of modelling the buildup of the dipole

from the decay of bipolar magnetic active regions, going to 3D (or 2� 2D) is

superfluous; all one needs to know, for each emerging active region, is its dipole

contribution, as given by Eq. (49), and this can be accomodated into mean-field like

2D axisymmetric model (viz. Sect. 5.4), or even 2-layers 1D models (such as,

e.g., Cameron and Schüssler 2017a). However the detailed latitude–longitude

representation of the solar surface magnetic field is interesting and useful for

reconstruction of the coronal and interplanetary magnetic field (e.g., Pinto et al.

2011; Dikpati et al. 2016), of solar irradiance variability, and for magnetographic

data assimilation for cycle prediction (e.g., Upton and Hathaway 2014b). The 3D

approach becomes essential when nonlinearities are taken into account, such as

surface inflows towards active regions (Cameron and Schüssler 2010; Jiang et al.

2010; Upton and Hathaway 2014a; Martin-Belda and Cameron 2016, 2017, and

references therein), or if diffusion is replaced by advection by (non-axisymmetric)

convective flows (Hazra and Miesch 2018). ‘‘Going nonlinear’’ is the obvious next

modelling step for all existing Babcock–Leighton solar cycle models.

Whether truly 3D or 2� 2D, model results published to date share some of the

difficulties already encountered with mean-field-like Babcock–Leighton models

described in Sect. 5.4. Polar fields tend to be too strong, and emergence at high

latitude need to be artificially suppressed.12 Here again the generalized use of a

steady, single cell per quadrant meridional flow profiles has been challenged by

some recent helioseismic inferences, although ‘‘the jury is still out’’ on this one.

Even in the kinematic regime, 3D solutions of the induction equation (1) are very

demanding computationally, making it difficult or impossible in practice to

systematically explore parameter space or perform simulation runs spanning

centuries or millenia. The 2� 2D model of Lemerle and Charbonneau (2017) is an

interesting compromise in this respect. Even there, computation time-related

constraints on spatial resolution in the SFT module makes it impossible in practice

to accurately reproduce the small size (and complexity) of real emerging active

regions.

5.6 The surface dipole as precursor

The strength of the solar surface magnetic dipole is known to be a good precursor

for the strength of the upcoming solar cycle, and this idea remains at the base of the

most succesfull extant ‘‘precursor’’ schemes for solar cycle prediction (Schatten

et al. 1978; Svalgaard et al. 2005; Pesnell 2016, see also Sect. 2 in Petrovay 2020).

This is sometimes taken to imply that the Sun must be a dynamo of the Babcock–

Leighton variety; Fig. 19 demonstrates that this is not necessarily the case. Panel a

12 The 2� 2D model of Lemerle and Charbonneau (2017) does not force artificially low latitude

emergences, but achieves this through a meridional flow penetrating deeply into the radiative core. It is

noteworthy that their genetic algorithm-based formal optimization of model parameters against the

sunspot butterfly diagram has autonomously rediscovered this way of ensuring low-latitude emergences,

originally proposed by Nandy and Choudhuri (2002).
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and b show time series of total magnetic energy (Eq. 44) and polar field strength for

two dynamo solutions taken from Charbonneau and Barlet (2011). The first is a

bona fide mean-field aX model including meridional circulation, as described in

Sect. 4.4, and the second a mean-field-like Babcock–Leighton, as described in

Sect. 5.4. In both cases stochastic forcing is introduced by imposing zero-mean

random fluctuations on the dynamo number/source term at the 50% level, with a

coherence time much shorter than the cycle period.

As shown in panel c, in either cases the surface polar field at solar minimum

shows no significant correlation with cycle amplitude, as measured by magnetic

energy. However, both show a very strong correlation between surface polar field

and the amplitude of the next cycle (panel d). What matters for this correlation to

materialize is that (1) the primary source of fluctuation resides in the T ! P part of

the dynamo loop, and (2) that the surface polar field feeds back into the dynamo

loop. Repeating the same experiment with the meridional flow turned off in the

mean-field aX models erases the precursor value of the surface polar field.

See Charbonneau and Barlet (2011) for more details on these and related numerical

experiments.

(A)

(B)

(C) (D)

Fig. 19 Stochastically-driven cycle fluctuations in a an aX mean-field model including meridional
circulation, and b a mean-field-like Babcock–Leighton model. The red and green lines are, respectively,
time series of total magnetic energy and surface polar field strength. Stochastic forcing is imposed
through piecewise-continuous zero-mean random variations of the dynamo number Ca, with coherence
time amounting to a few percent of the mean cycle period in each model. The gray horizontal bars
indicate epochs where a Gnevyshev–Ohl-like alternating pattern of cycle amplitude materializes in the
energy time series. The bottom panels show c the lack of correlation between the maximum cycle
amplitude and the dipole strength of the subsequent minimum, and d the strong positive correlation
between dipole strength at minimum and the amplitude of the following cycle
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6 Global MHD numerical simulations

Magnetohydrodynamical (MHD) simulations of solar convection solve numerically

the set of coupled nonlinear partial differential equations describing the conserva-

tion of mass, momentum, internal energy and magnetic flux in a thick spherical shell

of electrically conducting fluid subjected to thermal forcing:

oq
ot

þr � ðquÞ ¼ 0; ð53Þ

ou

ot
þ ðu � rÞu ¼ � 1

q
rp� 2X� uþ gþ 1

4pq
ðr � BÞ � Bþ 1

q
r � s; ð54Þ

oe

ot
¼ ðc� 1Þer � u ¼ 1

q
r � ðvþ vrÞrTð Þ þ /u þ /B½ ; ð55Þ

oB

ot
¼ r� ðu� B� gr� BÞ: ð56Þ

Here q is the fluid density, e is internal energy,13 p is gas pressure, s is the viscous

stress tensor, v and vr are the kinetic and radiative thermal conductivities, /u and /B

are the viscous and Ohmic dissipation functions, and other symbols have their usual

meaning.

In the solar/stellar dynamo context it is customary (although not universal) to

solve the MHD equations in a rotating reference frame [angular velocity X in

Eq. (54)], with the centrifugal force absorbed in the pressure gradient term so that

only the Coriolis force appears on the RHS of Eq. (54). Equations (53)–(56) need to

be augmented by an equation of state, usually the perfect gas Law, unless ionization

effects are explicitly considered as in simulations reaching close to the photosphere

(see, e.g., Hotta et al. 2014). The magnetic field subjected to the solenoidal

constraint r � B ¼ 0, and a solar structure model, either a helioseismically-

calibrated model or a polytropic approximation thereof, sets the fixed background

spherically symmetric stratification qðrÞ, T(r), etc. Convection is forced by

introducing a heat flux through the radial boundaries, or via a volumetric

heating/cooling term representing the the non-zero divergence of the radiative flux,

the ultimate energy source powering all inductive flows relevant to the problem.

Appropriate boundary conditions complete the mathematical specification of the

problem.

In the solar convection context the numerical solution of Eqs. (53)–(56) is quite

demanding from the computational point of view, in light of the vast range of scales

characterizing fluid turbulence at high viscous and magnetic Reynolds numbers.

Starting with pioneering work of Gilman (1983) and Glatzmaier (1984, 1985), and

propelled by ever improving compute power and algorithmic design, in the past

13 In practice the internal energy equation (55) is often recast in terms of specific entropy (see, e.g., Brun

et al. 2004; Fan and Fang 2014; Hotta et al. 2015) or, equivalently, potential temperature (e.g., Ghizaru

et al. 2010; Guerrero et al. 2013). This facilitates the imposition of an adiabatic background stratification

in the convecting fluid layers.
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decade many global MHD simulations have succeeded in generating a large-scale

magnetic field, sometimes undergoing polarity reversals in the form of more or less

regular cycles; for a representative sample, see: Racine et al. (2011), Masada et al.

(2013), Nelson et al. (2013), Fan and Fang (2014), Simitev et al. (2015), Duarte

et al. (2016), Guerrero et al. (2016a), Hotta et al. (2016), Käpylä et al. (2017) and

Strugarek et al. (2018). These simulations collectively encompass a wide variety of

simulation designs, algorithmic implementations, boundary conditions, rotation

rates, heat fluxes, and, most importantly perhaps, subgrid treatments of unresolved

scales. None is operating even remotely close to the dissipative regime expected to

characterize solar interior conditions; in particular, all must run with strongly

enhanced dissipation (viscosity, thermal diffusivity, magnetic diffusivity), either

explicitly through the introduction of enhanced ‘‘eddy’’ diffusivities (Large Eddy

Simulations) or dynamical subgrid models (Dynamical Large Eddy Simulations), or

implicitly via the adopted numerical discretisation scheme (Implicit Large Eddy

Simulations; including upwind schemes, slope limiters, etc.). However, even as

remote analogs of the sun and stars, these simulations do capture self-consistently

the dynamical interactions between flow and field at all spatial and temporal scales

resolved. Nonetheless important discrepancies remain with regards to observed

solar behavior. Arguably the most noteworthy has been dubbed the convective

conundrum: helioseismic determinations of the subsurface convective power

spectrum show much less power at large scales than typically produced by

numerical simulations (see Hanasoge et al. 2012; Lord et al. 2014; Cossette and

Rast 2016, and references therein, for further discussion).

The aim of this section is to discuss insight gained from such simulations that are

the most relevant to the simpler dynamo models discussed in the preceeding

sections. Towards this end the first step is to extract from the simulations an

equivalent of the large-scale, mean magnetic field, which is what simpler models

typically simulate. Working in spherical polar coordinates ðr; h;/Þ, zonal averaging
is the obvious choice, so that the (axisymmetric) mean flow uh i and magnetic field

( Bh i) are computed from the simulated flow u and field B as

uh iðr; h; tÞ ¼ 1

2p

Z
uðr; h;/; tÞd/; ð57Þ

Bh iðr; h; tÞ ¼ 1

2p

Z
Bðr; h;/; tÞd/: ð58Þ

The small-scale (and non-axisymmetric) flow and field are then defined as:

u0ðr; h;/; tÞ ¼ uðr; h;/; tÞ � uh iðr; h; tÞ; ð59Þ

B0ðr; h;/; tÞ ¼ Bðr; h;/; tÞ � Bh iðr; h; tÞ: ð60Þ

These can then be used to directly calculate the turbulent electromotive force via

Eq. (17). The axisymmetric differential rotation profile is extracted as
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DXðr; h; tÞ ¼ u/
	 


=r sin h, and the meridional flow components are taken directly as

urh i and uhh i.14

6.1 Convection and large-scale flows

Large-scale flows such as differential rotation and meridional circulation are

ultimately driven by turbulent convection and associated thermal gradients (see,

e.g., Miesch 2005; Miesch and Toomre 2009; Balbus et al. 2012; Featherstone and

Miesch 2015). A key dimensionless parameter for global flow dynamics is the

Rossby number, measuring the influence of the Coriolis force on convective flows:

Ro � v

2X‘
; ð61Þ

where v and ‘ are typical velocity and length scale of the convective eddies.15 The

Rossby number is a diagnostic parameter, in that it is measured a posteriori in

simulations. It is ultimately determined by the chosen rotation rate and convective

thermal heat flux.

In the rotationally-dominated regime Ro\1, convection organizes itself at low

latitudes into a longitudinal stack of latitudinally-elongated ‘‘banana cells’’, oriented

parallel to the rotation axis and extending across equatorial latitudes. Differential

rotation is largely steady and characterized by rapidly rotating equatorial regions,

with the rotational frequency decreasing smoothly towards polar latitudes.

Isocontours of angular velocity show a strong tendency to align parallel to the

rotation axis outside of a cylinder tangent to the equatorial base of the convectively

unstable fluid layers, a direct consequence of the Taylor–Proundman theorem. In the

opposite limit Ro[ 1, the dynamics is dominated by buoyancy, banana cells are

absent, and the equator rotates more slowly than the mid latitudes (often dubbed

‘‘anti-solar’’ differential rotation). The magnitude of latitudinal differential rotation

typically increases with rotation rate (see, e.g., Varela et al. 2016, and references

therein). With Ro
 0:1 at the base of its convection zone, the sun is believed to

stand in the rotationally-dominated regime, but barely so (see, e.g., Guerrero et al.

2013; Gastine et al. 2014; Featherstone and Miesch 2015; Käpylä et al. 2014;

Mabuchi et al. 2015).

The dynamics of the large-scale meridional flow is strongly coupled to that of

differential rotation via centrifugal driving (Kippenhahn 1963; Featherstone and

Miesch 2015, and references therein), and also shows a strong dependence on the

Rossby number. The Ro[ 1 regime, characterized by anti-solar differential

rotation, tends to generate a single meridional flow cell per meridional quadrant,

poleward in the upper convection zone and equatorward below. In the Ro\1

regime, on the other hand, the meridional flow tends to break up into multiple flow

14 An important caveat to keep in mind here is that any large-scale non-axisymmetric magnetic mode,

e.g. an inclined dipole, would automatically be subsumed into the ‘‘small-scale’’ magnetic field, even

though they represent a contribution to the large spatial scales. For a quantitative assessment of this

problem, see Racine et al. (2011), Sect. 3.1.
15 Some authors use instead the Coriolis number (Co), which is just the reciprocal of the Rossby number

defined in Eq. (61).
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cells, particularly at low latitudes. While differential rotation patterns are quasi-

steady when averaged over time periods significantly longer than the convective

turnover time, the mean meridional flows remain highly time-variable, even when

averaged over very long time spans. In simulations including an underlying

stable fluid layer, an equatorward return flow is typically produced via momentum

deposition by penetrating downflows (see Brun et al. 2011; Passos et al. 2015).

6.2 Polarity reversals and large-scale magnetic cycles

One of the most puzzling collective feature of current global MHD simulations of

solar convection and dynamo action is that simulations that appear quite similar in

terms of the flows they generate, often end up being characterized by widely

differing spatiotemporal evolution of their large-scale magnetic fields (see Char-

bonneau 2014, Sect. 3.2 for a discussion of three specific examples; also Käpylä

et al. 2017, appendix). Table 1 lists a selection of recent published simulations, with

some key features and dimensionless numbers and the last two columns

characterizing the behavior of large-scale magnetic cycles, when present.

Care is warranted in comparing parameters of one simulation to those of another,

as definitions and measurements methods often differ.16 Even with this caveat in

mind, one is hard pressed to extract any obvious pattern from Table 1 when it comes

to magnetic cycles. While this reflects in part a true sensitivity to physical parameter

regimes, it is also clear that algorithmic ‘‘details’’, in particular the (explicit or

implicit) treatment of small scales, also play a major role.

As an example of a simulated large-scale magnetic cycle, consider Fig. 20,

showing sample results for a 300-year long segment of the EULAG-MHD

1600-year long ‘‘millenium’’ simulation presented in Passos and Charbonneau

(2014).

This simulation generates a very regular magnetic cycle, well synchronized

across hemispheres and with the magnetic field antisymmetric about the equator, all

similar to the sun, but with a full magnetic cycle period of about 80 years, longer

than the sun’s by a factor of nearly four. Looking back at Table 1, this is at the

upper end of the range of cycle periods produced by other global MHD simulations

that produce reasonably regular magnetic cycles. As evidenced on Fig. 20b and d,

the magnetic field accumulates and reaches its peak strength in the outer reaches of

the convectively stable fluid layer (see also Browning et al. 2006; Masada et al.

2013; Guerrero et al. 2016a, 2019), reaching strengths approaching or exceeding

equipartition. This is a common feature in many other simulations as well, with

some also managing to produce strongly magnetized structures at low latitudes

within the convecting layers (e.g., Brown et al. 2010, 2011; Nelson et al. 2013;

Strugarek et al. 2018). Assuming that the sunspot-forming toroidal magnetic flux

ropes originate from the base of the convecting fluid layers, panel c becomes the

16 See, e.g., the appendix in Käpylä et al. (2017) Note in particular that in Implicit Large-Eddy

Simulations, the viscous (and magnetic) Reynolds number Re (Rm), as well as the thermal and magnetic

Prandtl numbers, must be evaluated a posteriori, and no concensus exists as to the most reliable way to do

so. Particularly challenging is the fact that some ILES schemes yield an effective dissipation that is

strongly scale-dependent (see Strugarek et al. 2016, 2018).
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analog of a sunspot butterfly diagram; activity thus peaks at mid- rather than low-

latitudes, and shows only a hint of equatorward propagation on the poleward edges

of the toroidal field bands; some other simulations fare better in this respect

(e.g., Warnecke et al. 2014; Augustson et al. 2015; Duarte et al. 2016; Strugarek

et al. 2018). This simulation also generates a strong dipole moment oscillating in

phase with the toroidal component, as well as a secondary, lower amplitude and

higher frequency cycle in the low-latitude outer convective layers, perhaps

analogous to the so-called biennial cycle observed in many solar activity indicators

(see Beaudoin et al. 2016, and references therein). Multiple cycles with markely

distinct frequencies have been observed in other simulations as well (e.g., Käpylä

et al. 2016; Strugarek et al. 2018).

While the simulation of Fig. 20 may look quite encouraging, the regular and

hemispherically well-coupled magnetic cycle it generates turns out to materialize

only in a restricted portion of the simulation’s parameter space. As alluded to

earlier, this sensitivity has multiple origins, both in ‘‘physics’’ and in ‘‘algorith-

mics’’. Consider for example the sequence of simulations discussed in Strugarek

et al. (2018); these are ILES simulations of the convection zone only, spanning

rotation rates going from 0.25 to 5.5 time solar, and peak convective luminosities in

the range 0:3\L=L	\17:5. The ratio of kinetic energy contained in differential

rotation (DRKE) over total kinetic energy (KE) is introduced as a diagnostic for the

Fig. 20 Magnetic cycles in the global EULAG-MHD anelastic ‘‘millenium’’ simulation of Passos and
Charbonneau (2014), essentially identical to those of Ghizaru et al. (2010) and Racine et al. (2011). This
simulation includes a convectively stable fluid layer underlying the convecting layers. Part a shows a
snapshot in Mollweide projection of the toroidal (zonal) magnetic component at depth r=R	 ¼ 0:718;
part b is a snapshot of the zonally-averaged toroidal field in a meridional plane, taken at the same time as
in a. Part c and d show respectively time–latitude and radius-latitude diagrams of the zonally-averaged
toroidal field, the former at depth r=R ¼ 0:718 and the latter at latitude �50�. The dashed lines in b and
d indicate the bottom of the convectively unstable layers. This is a moderate resolution simulation,
rotating at the solar rate but convectively subluminous with respect to the sun. For an accompanying
movie, see the supplementary material section below
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mode of operation of the large-scale dynamo. Plotting this quantity against Rossby

number on Fig. 21 reveals a surprisingly clean partition between steady large-scale

magnetic fields (RoJ1, in black), deep-seated solar-like decadal cycles

(0:25.Ro.1, in red), and short-period subsurface cycles (RoJ0:25, in blue), with

simulations straddling the border between these last two regions showing both

decadal and short-period cycles. This simulation set thus exhibits two major dynamo

transitions within only an order of magnitude in Rossby number, and these are

linked to turnovers in the spatial profile and strength of differential rotation, as

diagnosed here by the DRKE/KE ratio.

Considering that the Coriolis force is the agent providing the break of mirror

symmetry that allows for both Reynolds stresses powering differential rotation and
a non-zero turbulent a-effect, some sort of dependence of magnetic cycle period on

rotation rate is certainly expected. Pioneering modelling effort based on (linear)

mean-field dynamo theory suggested that cycle period should decrease with

increasing rotation rate, and indeed stellar cycle data available at the time could be

tolerably well fit by the relationship Pcyc / Ro5=4 (see Noyes et al. 1984). Global

MHD simulations of the type discussed here, on the other hand, suggest instead a

trend of increasing cycle period Pcyc with increasing rotation rate, as measured by

the Rossby number; Strugarek et al. (2018) find Pcyc=Prot 
Ro�1:6�0:14 (see their

Fig. 7), while Warnecke (2018) extracts from his simulations a slightly flatter

relationship (see his Fig. 7); both relationships yield comparable levels of

agreement with extant stellar cycle data; cf. Fig. 2 in Strugarek et al. (2017) and

Fig. 10 in Warnecke (2018). Augustson et al. (2019) provide additional insight and

scaling laws over a broader range of Rossby numbers and underlying convection

zone structure.

There is of course much more to cycle periods than the Rossby number. As a case

in point consider the two simulations from Käpylä et al. (2017) listed in Table 1;

Fig. 21 A synthetic summary of the simulation runs presented in Strugarek et al. (2018). The ratio of
kinetic energy associated with differential rotation (DRKE) to total flow kinetic energy (KE, dominated
by turbulent convection) is plotted against Rossby number. Decadal, deep-seated cycles are indicated in
red, while ‘‘short cycles’’, with periods 
 10 times shorter, are concentrated in the upper third of the
convective envelope. In a restricted range of Rossby number, Ro ’ 0:2–0.3, both types of cycles co-exist
in the same simulation. For Ro exceeding unity, the large-scale magnetic fields remains steady. Image
reproduced with permission from Strugarek et al. (2018), copyright by AAS
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they are identical in all but one input parameter, the magnetic Prandtl number Pm

(the ratio m=g of viscosity over magnetic diffusivity), which differs only by a factor

of two. These two simulations are characterized by nearly identical Rossby and

Reynolds numbers, but the periods of their magnetic cycles differ by almost a factor

of two.

6.3 Magnetic field storage, amplification and instability in the tachocline

With or without magnetism, simulations including an underlying layer of

convectively stable fluid tend to develop a tachocline-like shear layer therein

(see, e.g., Brun et al. 2011; Racine et al. 2011; Beaudoin et al. 2013; Guerrero et al.

2013, 2016a). The presence of such a stable layer has a drastic impact on magnetic

cycles, for reasons that are not yet fully understood. It can act as reservoir for

magnetic fields generated in the convection zone and subjected to downward

turbulent pumping. Local amplification by differential rotation shear, if sustained in

the stable layers, can also contribute to the buildup of magnetic fields therein

(see Browning et al. 2006). Whatever the relative importance of local amplification

versus pumping from above, the buildup of very strong magnetic fields in the

stable layer is observed in all simulations in which such a layer is included

(see Ghizaru et al. 2010; Racine et al. 2011; Masada et al. 2013; Guerrero et al.

2016a, 2019; Käpylä et al. 2019; Stejko et al. 2020).

Empirically, magnetic cycles unfold over longer periods in simulations with a

stable layer than in its absence. Consider, e.g., the two simulations by Guerrero

et al. (2016a) listed in Table 1, identical in all respects but for the presence of a

stable fluid layer in RC02 but not in CZ02; The former generates a magnetic cycle

with period over ten times that materializing in the latter, with markedly different

spatiotemporal evolution of the large-scale magnetic field even within the

convection zone.

One intriguing possibility is that the strong magnetic fields building up below the

convective layers become susceptible to one or more MHD instability, whose

growth and saturation ends up impacting dynamo action within the overlying

convecting layers. A proof-of-concept demonstration for the development of the

magnetocentrifugal instability is presented in Miesch (2007), for a tachocline-like

shear layer with forced differential rotation and toroidal magnetic field. The

development of this instability is characterized by a specific phasing pattern

between the toroidal magnetic field and non-axisymmetric magnetic field (see Fig. 2

in Miesch 2007). The same phasing pattern was measured by Lawson et al. (2015)

(see their Fig. 8) in the EULAG-MHD millenium simulation of Fig. 20, as well as

by Guerrero et al. (2019), in similar simulation setups where the buildup differential

rotation and toroidal magnetic field occurs self-consistently. On the other

hand, Lawson et al. (2015) computed the (resolved) Poynting flux at the interface

between their convectively stable and unstable fluid layers, and found it to be

downward-directed at all phases of the magnetic cycle (see their Figs. 6 and 7),

indicating that dynamo action is driven primarily in the convecting layers, and that

the impact of MHD instabilities in the tachocline is indirect, and may take place
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through alterations of the inductive flows at the base of the convective fluid layers

(on this point see also Käpylä et al. 2019).

6.4 Turbulent induction and mean-field coefficients

The mathematical machinery of mean-field electrodynamics (Sect. 3.2.1) can be

harnessed to provide insight on the nature of turbulent induction in MHD

simulations. Various approaches have been developed towards this end. The

simplest is to extract u0 from the simulation output and use Eqs. (24)–(25) and (27)

to calculate the isotropic parts of the a and b tensors, and the turbulent pumping

speed c. This will yield physically meaningful results only to the extent that the

simulations operate in a regime in which Eqs. (24)–(27) are valid, which is not

obvious to establish either a priori or a posteriori. Dubé and Charbonneau (2013)

offer one example where an axisymmetric kinematic mean-field aX model

constructed using Eq. (24) and the small-scale flow u0 extracted from a EULAG

simulation via Eq. (59) does generate a large-scale magnetic cycle resembling that

materializing in the parent MHD simulation (cf. their Figs. 7 and 8).

Next in line in simplicity is to best-fit, by least-squares minimisation, the

reconstructed time series of mean electromotive force to the mean magnetic field

time series. This implies first extracting from the simulation output u0, B0 and Bh i
via Eqs. (59), (60) and (58) at each time step, then calculating the turbulent mean

electromotive force E via Eq. (17). The tensorial coefficients in Eq. (18), which

now depend only on r and h (working in spherical polar coordinates), are adjusted so
as to minimize the differences between the EðtÞ and Bh iðtÞ time series

(see Brandenburg and Sokoloff 2002; Racine et al. 2011; Simard et al. 2016;

Augustson et al. 2015). Experience shows that useful (i.e., statistically significant)

results require very long time series and fairly stable cycles.

A more versatile (and complex) approach is the test-field method (Schrinner

et al. 2007; Warnecke et al. 2018; Viviani et al. 2019), and is directly anchored in

mean-field electrodynamics. Upon subtracting the mean-field induction equation

(16) from the unaveraged induction equation, one can obtain an evolution equation

for the fluctuating magnetic component B0:

oB0

ot
¼ r� ð uh i � B0 þ u0 � Bh i þ u0 � B0 � E � gr� B0Þ: ð62Þ

The test-field method solves this equation kinematically, with the mean and fluc-

tuating flow components uh i and u0 extracted from a simulation snapshot, acting on

a set of imposed large-scale test-fields for Bh i of distinct spatial orientations. This
scheme has the advantage of requiring only a snapshot of the flow as input, and

therefore allows to calculate the mean-field tensors in both the linear and nonlin-

early-saturated phases of the simulation.

Figure 22a–c shows meridional plane representations of the diagonal elements of

the a-tensor, radial and latitudinal turbulent pumping speed in d–e, and in f the

isotropic part of the the turbulent diffusivity tensor b, all extracted from the
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EULAG-MHD millenium simulation of Fig. 20 by Simard et al. (2016) using a

least-squares minimization method.

These show both similarities and differences with the tensor components

extracted from the simulations of Augustson et al. (2015) by a similar least-squares-

based method, and from the simulation of Warnecke et al. (2018), using the test-

field method. Considering that mean-field coefficients are strongly fluctuating

quantities, an inevitable consequence of the turbulent nature of MHD convection, it

is not clear at this juncture whether the differences reflect true differences in the

turbulent electromotive force developing in each of these (algorithmically and

physically distinct) numerical simulations, or artefacts introduced by the technique

used to extract the tensor components from the simulation output.17 Focusing on the

similarities, the following appear to be robust properties:

1. The a-tensor is full, with off-diagonal components of roughly similar magnitude

as diagonal components;

2. The largest magnitudes, reaching up to a few tens of m s�1, are found in the arr
component, with a// taking second place. The simulations of Augustson et al.

(2015) is somewhat more balanced in this respect, with the ahh and off-diagonal

components showing magnitudes similar to arr and a//.

(A) (B) (C)

(D) (E) (F)

Fig. 22 A selection of mean-
field tensor components
extracted from the global
EULAG-MHD simulation of
Fig. 20. a arr ; b ahh; c a//; d
radial turbulent pumping speed
cr ; (e) latitudinal turbulent
pumping speed ch; f the isotopic
part of the b tensor, in unit of

107 m2s�1. In all cases the
extraction is carried out
independently in each
hemisphere, so that the high
degree of symmetry/
antisymmetry about the
equatorial plane is a true feature
of the simulation

17 In an otherwise very interesting paper, Warnecke et al. (2018) compare the tensor components

extracted from their simulation using both the least-squares and test-field methods, and find large

differences between the two methods. On this basis, and without error estimates on either set of results,

they conclude that those obtained by least-square method are ‘‘incorrect’’ (p. 18) and that conclusions

drawn on the basis of such results are ‘‘misleading’’ (p. 17). It must be pointed out that this conclusion

only stems from considering the test field results as being correct a priori. Without this extraneous

assumption, and even if the difference between both sets of results were to be shown statistically

significant, all one can logically conclude is that at least one method (and perhaps both) yields spurrious

results when applied to the specific simulation being analyzed.
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3. a// and ahh are both mostly positive (negative) in the Northern (Southern)

hemisphere, but shows a sign change near the base of convecting fluid layer (on

this see also Duarte et al. 2016);

4. Radial turbulent pumping, associated with the antisymmetric part of the a tensor
in Eq. (18), is downwards in the bulk of the convecting layers.

5. Significant equatorward latitudinal turbulent pumping, at speed in the m s�1

range, materializes at mid- to low-latitudes in the bulk of the convecting fluid

layers.

6. The isotropic turbulent diffusivity b is high, ranging from a few 1011 cm2 s�1 on

Fig. 22f, approaching 1013 cm2 s�1 in the more luminous simulations analyzed

by Warnecke et al. (2018).

In the EULAG-MHD simulation analyzed by Simard et al. (2016), Eqs. (24)–

(25) offer a reasonably good reproduction of the a// and isotropic part of the

diffusivity tensor b extracted from the simulation, provided one assumes the

coherence time to be smaller than the turnover time by a factor of about 5.

Interestingly, short coherence time turbulence is one regime in which these

expressions can be expected to hold (Moffatt 1978; Schrijver and Siscoe 2009,

Chap. 3). Warnecke et al. (2018) also find a reasonably good fit between the

diagonal components of their extracted a-tensor and Eqs. (24)–(25), with an

amplitude scaling factor ranging from ’ 3 for arr to ’ 10 for ahh (see their Fig. 1).
Overall, these inferences show no outstanding departures from measurements of the

a-tensor in MHD numerical simulations of rotating, stratified turbulence in a box

(see, e.g., Ossendrijver et al. 2001, 2002; Käpylä et al. 2006a, 2009, and references

therein).

6.5 Magnetic quenching of the a-effect and turbulent diffusivity

Measurements of diffusivity quenching in MHD simulations of mechanically forced

turbulence with imposed large-scale magnetic fields have led to a wide variety of

results (see Sect. 1 in Karak et al. 2014, and references therein). Analysis of

simulations generating a large-scale magnetic component autonomously (Branden-

burg et al. 2008; Racine et al. 2011; Simard et al. 2016; Warnecke et al. 2018)

indicate that the b tensor components suffer significantly less quenching by the

large-scale magnetic field than do the components of the a-tensor. Racine et al.

(2011), Simard et al. (2016) and Warnecke et al. (2018) all find clear cyclic signals

in their a-tensor components, of period commensurate with the large-scale magnetic

cycle. Warnecke et al. (2018) detect a sign change due to the current helicity

contribution to the a-effect (as per Eq. (34) herein), which in their simulation alters

the propagation direction of dynamo waves. In the simulation analyzed by Simard

et al. (2016), on the other hand, the contribution magnetic (current) helicity to the a-
tensor remains too small to lead to a sign change. These latter authors find the strong

a-quenching formula (46) to provide a tolerable fit to the measured quenching, for

magnetic Reynolds number values Rm
 10–30, consistent with a posteriori

estimates from the simulation output (cf. Table 1).
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6.6 Cyclic magnetic modulation of large-scale flows

Magnetic fields are a major contributor to zonal dynamics, and typically lead to

reduced differential rotation as compared to otherwise identical purely hydrody-

namical simulations even in cases where little large-scale magnetic fields are

generated. (e.g., Brun et al. 2004; Brown et al. 2011; Beaudoin et al. 2013; Varela

et al. 2016). Around Ro
 0:5 magnetism can tip differential rotation from anti-solar

to solar-like (Fan and Fang 2014; Karak et al. 2015; Mabuchi et al. 2015; Simitev

et al. 2015), and also break the constraints imposed by the Taylor–Proudman

theorem (Hotta 2018). The presence of magnetic fields also has a significant impact

on meridional flow dynamics (see Passos et al. 2015; Guerrero et al. 2016b; Passos

et al. 2017, and references therein).

Focusing on differential rotation and following Brun et al. (2004), the force

balance is expressed by casting the zonal component of the momentum equation in

flux form:

qr sin h
o u/
	 

ot

¼ r �
n
r sin h

h 1

4p

�
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Upon using again Eqs. (57)–(60) to extract the mean and fluctuating flow and field

component from the simulation output, it is straightforward to compute the terms on

the RHS. In the case of the millenium simulation of of Fig. 20, the analysis

of Beaudoin et al. (2013) indicates that the magnetic torques associated with the

cycling large-scale magnetic component (labeled MT in Eq. 63) do vary signifi-

cantly in the course of the magnetic cycle, as expected, but the contributions from

Reynolds stresses (RS), Maxwell stresses (MS) and advection by the meridional

flow (MC) all vary as well, at overall levels similar to the magnetic torques (see

Figs. 7,8 in Beaudoin et al. 2013, also Fig. 5b in Augustson et al. 2015

and Guerrero et al. 2016b). In the language of Sect. 4.2.5, both the Malkus–Proctor

and K-quenching mechanism operate in these simulations.

6.7 Formation of buoyant magnetic structures

Current thinking places the formation and storage of the sunspot-forming toroidal

magnetic flux ropes in the mildly subadiabatic outer reaches of the convectively

stable layer underlying the solar convection zone, within the tachocline. Some

recent simulations (Nelson et al. 2013; Fan and Fang 2014; Chen et al. 2017) have

reopened an interesting alternative, namely that buoyant, super-equipartition-

strength magnetic rope-like structures could form within the highly turbulent
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environment of the convecting layers (see also Jouve et al. 2013). Interestingly,

these structures retain the approximate orientation of the larger toroidal structures

within which they formed all the way to the top of the simulation, in agreement with

Hale’s polarity Laws (Nelson et al. 2014). These authors also show that when they

reach the the top of the domain, the ensemble of loops also exhibit a distribution of

tilt orientation with respect to the direction of rotation that is similar to Joy’s Law

(see their Fig. 8).

6.8 Lessons learned

The relatively brief (and perhaps dizzying) tour of global MHD simulation

presented in this section is necessarily incomplete and glossed over many delicate

computational and physical issues. Nonetheless, to sum up the most salient

empirically determined features of simulated large-scale magnetic cycles:

• Regular, solar-like stable cycles with strong hemispheric coupling and

synchrony are the exception rather than the rule.

• The presence and period of magnetic cycles depends sensitively on rotation; low

Ro favors magnetic cycles, high Ro favors steady large-scale magnetic fields. In

the solar range of Ro, the cycle period increases with increasing rotation rate.

• Multiple magnetic cycles with significantly different periods can coexist at

moderately small Rossby numbers (0:1.Ro.1).

• In mean-field terminology, simulated large-scale magnetic cycles are driven by

an a2X dynamo.

• The a-tensor components extracted from simulations compare surprisingly well

to expectations based on the kinematic, near-isotropic and homogeneous

turbulence regime of mean-field theory.

• In many (but not all, viz. Viviani et al. 2019) simulations, the spatiotemporal

propagation of the large-scale magnetic fields appears consistent with the

Parker-Yoshimura rule for dynamo waves.

• Both K-quenching and the Malkus–Proctor mechanism are detected in

simulations. A form a-quenching is also measured, while quenching of the

turbulent diffusivity appears marginal.

• The presence of a stably stratified fluid layer underlying the convecting fluid

yields longer period cycles, and the growth of MHD instabilities therein may

impact cyclic activity

• Autonomous generation of super-equipartition, buoyant flux ropes-like struc-

tures takes place within the turbulent convecting layer. These structures rise to

the top of the domain retaining their E–W orientation (Hale’s Laws) and at least

in some cases acquire a tilt qualitatively similar to Joy’s Law.
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7 Amplitude fluctuations, multiperiodicity, and Grand Minima

Since the basic physical mechanism(s) underlying the operation of the solar cycle

are not yet agreed upon, attempting to understand the origin of the observed

fluctuations of the solar cycle may appear to be a futile undertaking. Nonetheless,

work along these lines continues at full steam in part because of the high stakes

involved; the frequencies of all eruptive phenomena relevant to space weather are

strongly modulated by the amplitude of the solar cycle; varying levels of solar

activity may contribute significantly to long-term climate change (see Haigh 2007,

and references therein); and certain aspects of the observed fluctuations may

actually hold important clues as to the physical nature of the dynamo process.

The inductive flows driving the solar magnetic cycle are most certainly impacted

by the associated Lorentz force; and the inductive processes themselves are most

certainly subjected to stochastic fluctuations, as the solar dynamo operates in a

turbulent environment. The solar dynamo is thus both stochastic and nonlinear.
The aim of this section is thus to provide an overview of the pattern of cycle

variability that can be produced in the various dynamo models considered in the

preceeding sections, in response to stochastic forcing and nonlinear magnetic

backreaction. Following a brief overview of relevant observed variability patterns in

Sect. 7.1, we first consider in Sect. 7.2 some generic patterns of fluctuating

behavior, with pointers to specific representative examples in the published

literature. We then focus in Sects. 7.3 and 7.4 on intermittency and thresholded

modulation as mechanisms providing explanatory models for Grand Minima in

solar activity. The few extant occurences of Grand Minima-like behavior in global

MHD numerical simulations are discussed in Sect. 7.5, and Sect. 7.6 covers briefly

the possible impact of fossil magnetic fields in the solar interior.

7.1 The observational evidence: an overview

Hathaway (2015) and Usoskin (2017) offer comprehensive reviews of the

observational phenomenology of the solar cycle, as viewed through the sunspot

number and other activity indicators; what follows is restricted to feature having

most direct bearing on dynamo modeling.

First an important caveat is in order. Cycle-to-cycle variations in sunspot number

(SSN) are usually taken to indicate a corresponding variation in the amplitude of the

Sun’s dynamo-generated internal magnetic field. As reasonable as this may sound, it

remains a working assumption; at this writing, the process via which the dynamo-

generated mean magnetic field produces sunspot-forming magnetic flux ropes is not

understood. One should certainly not take for granted, say, that a difference by a

factor of two in SSN indicates a corresponding variation by a factor of two in the

strength of the internal magnetic field (or energy).

Nonetheless, the idea a nicely regular sunspot cycle does not hold long; the data

(see Fig. 1 herein) indicate large variations in amplitude and to a somewhat lesser

extent in duration. These variations are not a sunspot-specific artefact; similar

variations are in fact observed in other activity proxies with extended records, most
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notably the 10.7 cm radio flux (Tapping 1987), polar faculae counts (Sheeley 1991;

Muñoz-Jaramillo et al. 2012), and the cosmogenic radioisotopes 14C and 10Be (Beer

2000; Beer et al. 2012; Usoskin 2017).

The various incarnations of the sunspot number time series (monthly SSN,

13-month smoothed SSN, yearly SSN, etc.) may well be the most intensely studied

time series in astrophysics. Various significant correlations and statistical trends

have been sought and found in these datasets. For example, the ‘‘Waldmeier Rule’’

refers to a statistically significant anticorrelation between cycle amplitude and rise

time, and the ‘‘Gnevyshev–Ohl Rule’’ refers to a marked tendency for odd (even)

numbered sunspot cycles to have amplitudes above (below) their running mean. For

more on these (and other) empirical sunspot ‘‘Rules’’, see Hathaway (2015).

Even more striking is the pronounced dearth of sunspots in the interval

1645–1705 (viz. Fig. 1a). This is not due to lack of observational data but represents

instead a phase of strongly suppressed activity now known as the Maunder

Minimum (Eddy 1976, 1983). Evidence from cosmogenic radioisotopes indicates

that similar periods of suppressed activity have taken place in ca. 1282–1342 (Wolf

Minimum) and ca. 1416–1534 (Spörer Minimum), also reveals a period of enhanced

activity in ca. 1100–1250 (the Medieval Maximum), and that such episodes have

recurred irregularly over the more distant past (Usoskin 2017).

A number of long-timescale modulations have also been extracted from these

data, most notably the so-called Gleissberg cycle (period ’ 88 years), but the length

of the sunspot number record is insufficient to firmly establish the reality of these

periodicities. Likewise, the search for chaotic modulation in the SSN time series has

produced a massive literature but without really yielding firm, statistically

convincing conclusions, again due to the insufficient lengths of the datasets.

See Letellier et al. (2006) for a good recent entry point into this literature, and Wing

et al. (2018) for related approaches based on information theory. Activity

reconstructions based on cosmogenic radioisotopes allows a considerable extension

back in time, but difficulties in establishing absolute amplitudes of production rates

introduce additional uncertainties into what is already a complex endeavour

(see Beer 2000; Beer et al. 2012; Usoskin 2017, for more details).

7.2 Cycle modulation: generic behaviors

Rather than attempting to exhaustively review the published literature on modelling

solar cycle variablity, the purpose of this section is to survey and categorize extant

models in term of generic behavior, i.e., behaviors that, at least at a qualitative level,

do not depend sensitively on model choices and implementation details.

7.2.1 Going critical and Hopfing along

From a dynamical system point of view, the onset of dynamo action at D�Dcrit

(i.e., positive growth rates in the linear regime) reflects the loss of stability of the

fixed-point (trivial) solution B ¼ 0 to a limit cycle, through a Hopf-type bifurcation.

This is illustrated schematically on Fig. 23, where the thick line is some appropriate
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measure of cycle amplitude, plotted versus dynamo number. Once the critical

dynamo number is exceeded, the dynamo eventually saturates at a magnetic

amplitude that increases with increasing dynamo number (see also Fig. 5 in

Sect. 4.2.8).

The Hopf bifurcation route to cyclic dynamo action is believed to be a generic

feature of nonlinear solar/stellar dynamos (e.g., Tobias et al. 1995; Weiss and

Tobias 2016, and references therein). Figure 23 then suggests that any mechanisms,

deterministic or stochastic, leading to variations in any source term on the RHS of

the dynamo equations (38)–(39) can lead to amplitude variability in cycle

properties, irrespective of details of the nonlinearity as long as the dynamo is

operating not too far into the supercritical regime.18 This is illustrated by the two

colored boxes on Fig. 23; variations of the effective dynamo number (horizontal)

will induce variations in cycle amplitude (dA, vertical) as the system seeks to

recover its equilibrium amplitude on a timescale given by the linear growth rate, and

the magnitude of these amplitude variations will be largest close to the bifurcation

(red box).

7.2.2 Stochastic forcing and the art of noise

Sources of stochastic fluctuations abound in the solar interior, all ultimately due to

the strongly turbulent character of solar convection, the ultimate energy source of all

inductive processes contributing to solar dynamo action. Tensor components

describing the turbulent electromotive force are expected to be strongly fluctuating

quantities, an expectation confirmed by analytical estimates (e.g., Hoyng

Fig. 23 Schematic representation of a Hopf bifurcation, describing the transition from a fixed-point
B ¼ 0 solution of the dynamo equation losing stability to a cyclic (limit cycle) solution when the dynamo
number D exceeds its critical value Dcrit. Depending how far into the supercritical regime the dynamo is
operating, variations in the dynamo number can translate into smaller (green) or larger (red) variations in
cycle amplitudes dA (see text)

18 Far into the supercritial regime, further bifurcations can introduce a variety of complex and model-

dependent behaviors as the dynamo number is varied, whether stochastically or deterministically.

See Jennings and Weiss (1991), Roald and Thomas (1997) and Roald (1998) for some particularly rich

bifurcation diagrams in the solar/stellar dynamo context.
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1988, 1993) and measurements in numerical simulations (e.g., Otmianowska-Mazur

et al. 1997; Ossendrijver et al. 2001; Brandenburg and Sokoloff 2002; Käpylä et al.

2006a; Racine et al. 2011; Simard et al. 2016; Warnecke et al. 2018, and references

therein). As for the Babcock–Leighton mechanism, observations of emerging

bipolar magnetic active regions reveals large fluctuations in key characteristics for

buildup of surface polar fields, notably tilt angle, flux, and pole separation. More

generally, all inductive mechanisms considered in Sect. 3.2 arise from a finite

number of ‘‘events’’ (cyclonic updrafts, emerging bipolar magnetic region, helical

twist on a flux rope, etc.) collectively adding up to a mean azimuthal electromotive

force. The large-scale flows contributing to magnetic field induction and transport

are also driven by turbulent effects, and are expected to show strong fluctuations

about their mean profiles.

As exemplified by the red box on Fig. 23, if the dynamo operates only marginally

above criticality even small variations in dynamo number can led to large cycle

amplitude variations, persisting over a timescale set by the (inverse) linear growth

rate, which can be significantly longer than the cycle period for solutions near

criticality. Cameron and Schüssler (2017b) introduced the following simple

stochastic differential equation as a toy model to quantify the consequences of

such stochastic driving:

dX

dt
� ðbþ ix0ÞX þ ðcr þ iciÞjXj2X ¼ rX

dW

dt
: ð64Þ

Here X is a measure of the magnetic field, the cubic nonlinearity is meant to capture

the effect of flux loss by magnetic buoyancy, and W(t) is a stochastic process of

amplitude r. Without this stochastic term on the RHS, Eq. (64) would describe a

nonlinear limit cycle of amplitude
ffiffiffiffiffiffiffiffiffi
b=cr

p
and angular frequency x0 � cib=cr.

Working in the weakly supercritical regime, the various numerical parameters in

Eq. (64) can be adjusted to generate time series whose spectral properties closely

resemble those of the sunspot number time series. Barnes et al. (1980) present an

even simpler toy model achieving qualitatively similar results.

Turning to spatially-extended models, the effect of stochastic forcing has been

investigated in most detail in the context of classical mean-field models

(see Choudhuri 1992; Hoyng 1993; Ossendrijver and Hoyng 1996; Ossendrijver

et al. 1996; Mininni and Gómez 2002, 2004; Moss et al. 2008; Charbonneau and

Barlet 2011). In models not too far from criticality variations of the cycle amplitude

on timescales much longer than the cycle period are readily generated, especially

when the models include a tachocline-like low-diffusivity layer beneath the nominal

convection zone. In the advection-dominated regime, time delay effects also provide

a robust mechanism for generating a Gnevyshev–Ohl-like pattern of alternating

high/low cycle amplitudes in response to stochastic forcing (see, e.g., Fig. 19

herein).

A particularly interesting consequence of random forced variations of the

dynamo number, in mean-field models at or very close to criticality, is the coupling

of the cycle’s duration and amplitude (Hoyng 1993; Ossendrijver and Hoyng 1996;

Ossendrijver et al. 1996), leading to a pronounced anticorrelation between these two
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quantities that is reminiscent of the Waldmeier Rule, and hard to produce by purely

nonlinear effects (cf. Ossendrijver and Hoyng 1996). However, this behavior does

not carry over to the supercritical regime, so it is not clear whether this can indeed

be accepted as a robust explanation of the observed amplitude-duration anticorre-

lation. In the supercritical regime, a-quenched mean-field models are less sensitive

to stochastic noise (Choudhuri 1992), unless of course they happen to operate close

to a bifurcation point, in which case large amplitude and/or parity fluctuations can

be produced (see, e.g., Moss et al. 1992).

Mean-field-like implementations of Babcock–Leighton dynamos behave simi-

larly upon introduction of random stochastic forcing in their source term and/or

other model components (see e.g. Charbonneau and Dikpati 2000; Charbonneau and

Barlet 2011; Choudhuri and Karak 2012; Olemskoy and Kitchatinov 2013;

Kitchatinov et al. 2018; Hazra and Nandy 2019). The comparison of the two

solutions displayed on Fig. 19 herein is quite telling in this respect. Incorporating

observed distributions of active region properties in Babcock–Leighton dynamos

including a latitude–longitude representation of the solar surface, as considered in

Sect. 5.5, can also lead to very solar-like behavior, as exemplified in Fig. 18 herein

(see also Karak and Miesch 2017).

7.2.3 Nonlinear modulation: surfing the wave

Considering the key role played by rotational shear in all dynamo models surveyed

in Sects. 4 and 5, the dynamical backreaction of the large-scale magnetic field on

differential rotation is an obvious mechanism to consider. Such non-kinematic

mean-field and mean-field-like models have been studied extensively, either via the

perturbation or K-quenching approaches described in Sect. 4.2.5, and shown to lead

to a wide range of variability patterns.

Figure 24a depicts schematically the workings of this amplitude modulation

mechanism. Imagine the dynamo to operate in the supercritical regime with

(A) (B)

Fig. 24 Schematic depiction of a amplitude modulation, and b parity modulation in non-kinematic
dynamo models near criticality
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amplitude indicated by the dot labeled A. Suppose now that the growing magnetic

field leads to a reduction of differential rotation, and thus of the effective dynamo

number D. The system will gradually move from point A towards B, to a much

lower magnetic amplitude, and thus much reduced Lorentz force.

This will allow differential rotation to recover, moving the system back to A. The
dynamo number D is thus moving periodically back and forth within the range

indicated by the blue box on Fig. 24a, with attendant gradual waxing and waning of

the cycle amplitude, from point A to B and back.

An interesting variation on this pattern, parity modulation, occurs when the

lowest order equatorially symmetric (quadrupole-like) and antisymmetric (dipole-

like) dynamo modes have comparable critical dynamo numbers and growth rates, as

is often the case with many mean-fied and mean-field-like models. This is plotted as

two distinct bifurcation curves on Fig. 24b, labeled ‘‘D’’ and ‘‘Q’’. Consider again a

slow decrease of the dynamo number driven by a gradual reduction of differential

rotation, pushing now the dominant mode (here D) from A to B, i.e., below its

critical dynamo number (left-pointing blue arrow). Once differential rotation begins

to recover and the effective dynamo number starts to increase (right-pointing

arrow), the system resides temporarily in a regime in which the quadrupole-like

symmetric mode has the largest growth rate, before returning to its dipole-like initial

state. Once again a periodic modulation of the primary cycle is generated, but this

time it is accompanied by a change in equatorial parity. For symmetric and

antisymmetric modes having closely similar growth rates and critical dynamo

numbers, this type of parity modulation can be mediated by relatively small

variation of differential rotation (and also by stochastic forcing; see, e.g., Mininni

and Gómez 2004; Olemskoy and Kitchatinov 2013; Hazra and Nandy 2019).

Figure 25 shows an example, taken from the non-kinematic a2X mean-field dynamo

solutions presented in Simard and Charbonneau (2020). The ‘‘perturbation flow’’

procedure outlined in Sect. 4.2.5 is used to follow magnetically-driven variations in

Fig. 25 Parity modulation in the non-kinematic a2X mean-field model of Simard and Charbonneau
(2020). The top panel is a time–latitude diagram of the toroidal field (color scale) in the middle of the
convection zone. The bottom row shows snapshot of the toroidal field in meridional planes, extracted at
the times indicated by dashed lines on the top panel. Poloidal fieldlines are plotted as solid (dashed) lines
for couterclockwise (clockwise) orientation
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differential rotation. Here, as the magnetic cycle amplitude falls and rises again, the

equatorial parity switches from symmetric (quadrupole-like) to antisymmetric

(dipole-like).

In the case of amplitude modulation (Fig. 24a), energy is exchanged between

magnetic and kinetic reservoirs; while in the parity modulation case it is exchanged

(mostly) between two magnetic reservoirs (one per parity). These have been dubbed

Type II and Type I modulation (see discussion in Tobias et al. 1995; Knobloch and

Landsberg 1996; Knobloch et al. 1998; Weiss and Tobias 2016). Both types of

modulation can co-exist, as demonstrated by the magnetic energy time series for

non-kinematic aX mean-field dynamo solutions plotted on Fig. 26. These model

runs, taken from Bushby (2006), are again computed using the ‘‘perturbation flow’’

procedure outlined in Sect. 4.2.5.

For a magnetic Prandtl number of unity (not shown), a constant amplitude cycle

is produced, of period Pcyc 
 10�2 s and critical dynamo number ’ �1:5� 106.

When Pm is reduced significantly below unity, there appears a large amplitude

modulation of the primary cycle, with modulation period 
 Pcyc=Pm (Panel a). As

the dynamo number is increased this modulation becomes chaotic (panel b). At

fixed dynamo number, reducing Pm also increases the magnitude of the differential

rotation perturbation, as measured here by the perturbation kinetic energy (cf. blue

lines on panels c and d). These behavior are robust and have been observed in a

variety of non-kinematic models (see, e.g., Moss and Brooke 2000; Phillips et al.

2002; Simard and Charbonneau 2020), including models relying on K-quenching
(e.g., Küker et al. 1999; Pipin 1999; Inceoglu et al. 2017).

7.2.4 Time delays: lagging behind

The introduction of ad hoc time-delays in dynamo models is long known to lead to

pronounced cycle amplitude fluctuations (see, e.g., Yoshimura 1978; Wilmot-Smith

et al. 2006; Jouve et al. 2010). However, time-delay effects can arise naturally in

dynamo models where the source regions for the poloidal and toroidal magnetic

components are spatially segregated, such as solar cycle models based on the

Babcock–Leighton mechanism. In these models meridional circulation (or turbulent

pumping) usually sets the cycle period (see Sect. 5.4.2 herein). In doing so, it also

introduces a long time delay in the dynamo mechanism, ‘‘long’’ in the sense of

being comparable to the cycle period. This delay originates with the time required

for circulation (or pumping) to transport the surface poloidal field down to the core–

envelope interface, where the toroidal component is produced by rotational

shear.19 Durney (2000) and Charbonneau (2001) explored the dynamical conse-

quences of this long time delay, using a simple one-dimensional iterative map. As

the dynamo number increases beyond criticality, the system exhibits a classical

transition to chaos through successive period doubling bifurcations. A Gnevyshev–

Ohl pattern also materializes naturally in response to low amplitude stochastic

19 Models including nonlinear backreaction on differential rotation can also exhibit what essentially

amounts to time-delay dynamics in the low Prandtl number regime, with the large-scale flow

perturbations lagging behind the Lorentz force because of inertial effects.
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fluctuations. Counterparts of these behaviors materialize in spatially-extended

mean-field-like Babcock–Leighton models of the type considered in Sect. 5.4

(see Charbonneau et al. 2005, 2007, also Wilmot-Smith et al. 2006).

7.2.5 Rattling the conveyor belt

Again because of the crucial role played by magnetic field transport mechanisms in

solar cycle models of the flux transport variety, deterministic or stochastic forcing of

transport mechanisms can lead to large cycle amplitude variability. Efforts along

these lines have mostly focused on forced variations of the meridional flow. For

example, (Nandy et al. 2011) have presented model results suggesting that the

extended activity minimum between cycles 23 and 24 was caused by a slowdown on

meridional circulation during cycle 23. By similar means, Lopes and Passos (2009)

could reproduce quite well the observed variations of sunspot cycle amplitudes

since 1750 (see Fig. 27), while Karak and Choudhuri (2011) could reproduce the

observed anticorrelation between cycle rise time and amplitude.

(A)

(B)

(C)

(D)

Fig. 26 Cycle amplitude modulation in the non-kinematic aX mean-field model of Bushby (2006). Each

panel shows time series of magnetic energy (ME, black), kinetic energy of the perturbation flow U0 (PKE,
dashed-blue, cf. Eq. 36), and equatorial parity (dotted-red), scaled between �1 (antisymmetric, dipole-
like) and þ1 (symmetric, quadrupole-like) to the vertical extent of each panel. The four panels differ in
dynamo number and/or magnetic Prandtl number, as labeled. Note also the different vertical scales from
one panel to another. Time is measured in units of the magnetic diffusion time s [see Eq. (41)]. Plot
generated from numerical data kindly provided by P. Bushby
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In all cases, however, the required coherence time of the forced meridional flow

variations is quite long, of the order or even exceeding the cycle period; this is hard

to justify physically, even more so since MHD simulations indicate that magnetic

variability drives meridional flow variations on timescales of the order of the cycle

period (or longer), rather than the other way around (Passos et al. 2017).

7.3 Intermittency and Grand Minima/Maxima

The term ‘‘intermittency’’ was originally coined to characterize signals measured in

turbulent fluids, but has now come to refer more generally to systems undergoing

apparently random, rapid switching from quiescent to bursting behaviors, as

measured by the magnitude of some suitable system variable (see, e.g., Platt et al.

1993). Intermittency thus requires at least two distinct dynamical states available to

the system, and a means of transiting from one to the other. In the context of solar

cycle model, intermittency refers to the existence of quiescent epochs of strongly

(A)

(B)

(C)

Fig. 27 Effect of persistent variations in meridional circulation on the amplitude of the solar cycle, as
modeled by Lopes and Passos (2009). Panel a shows the signed square root of the sunspot number (gray),
here used as a proxy of the solar internal magnetic field. A smoothed version of this time series (black) is
fitted, one magnetic cycle at a time (green), with the equilibrium solution of the truncated dynamo model
of Passos and Lopes (2008); assuming that variations in the fitting parameters are due to variations in the
meridional flow speed (vp), the coarse time series of vp of panel b (in green) is obtained, scaled to the

magnetic cycle 1 value and with error bars from the fitting procedure. Input of this piecewise-constant
meridional flow variation (scaled down by a factor of two, in red in panel b) in the 2D Babcock–Leighton
dynamo model of Chatterjee et al. (2004) yields the pseudo-SSN time series plotted in Panel
c (figure produced from numerical data kindly provided by D. Passos)
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suppressed activity randomly interspersed within periods of ‘‘normal’’ cyclic

activity. Observationally, the Maunder Minimum is usually taken as the exemplar

for such quiescent epochs.

Much effort has already been invested in categorizing intermittency-like

behavior observed in solar cycle models in terms of the various types of

intermittency known to characterize dynamical systems (see Ossendrijver and

Covas 2003, and references therein). In what follows, we simply survey the various

routes to intermittency uncovered in the various types of solar cycle models

discussed earlier, and give pointers to good representative examples in the published

literature.

Figure 28a depicts schematically the mode of operation of on–off intermittency,
potentially relevant to any of the dynamo models considered previously. Consider

any mechanism, whether stochastic or deterministic, that can push the dynamo

number below its critical value (red arrow); the cycle amplitude then decays

exponentially, until the dynamo number moves back above criticality (green arrow)

and the amplitude builds up again; this is fundamentally the same idea as amplitude

modulation (Fig. 24a), except that the bifurcation is now crossed. On–off

intermittency is easiest to produce when the dynamo is operating close to

criticality. In situations where the fastest growing modes of symmetric and

antisymmetric equatorial parity have comparable growth rates (viz. Fig. 24b),

intermittency can be accompanied by parity modulation. (Sokoloff and Nesme-

Ribes 1994).

Figure 29 shows an example, taken from Olemskoy and Kitchatinov (2013). The

simulation segment plotted on the top panel exemplifies a Spörer-like Grand

Minimum extending over a century, with residual cyclic activity in the Southern

hemisphere and persistent hemispheric asymmetry in the recovery to normal cyclic

behavior.The bottom panel shows a extended time series of individual peak cycle

amplitudes, smoothed with a running 1-2-2-2-1 filter. The primary decadal cycle is

(A) (B)

Fig. 28 Schematic depiction of a on–off intermittency and b in–out intermittency in a generic bifurcation
diagram close to criticality. In b the gray shaded area indicates the basin of attraction of the finite
amplitude cycle. Outside of this basin the amplitude decays exponentially to zero, even if D[Dcrit (see
text)
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lost on such a representation, leaving the multidecadal modulation amplitude

generated by the stochastic forcing. The regions colored in blue and red delineate

epochs identified as Grand Minima and Maxima, respectively.

As with most such models stochastically forced to trigger intermittency, the

Grand Minima and Maxima on Fig. 29b recur aperidiocally, with an exponential

distribution of inter-event waiting times, indicative of a stationary memoryless

random process. This is consistent with the waiting time distribution inferred from

the cosmogenic radioisotope record (see Usoskin 2017, and references therein). For

other interesting examples of on–off intermittency driven by stochastic noise,

see Hoyng (1993), Mininni and Gómez (2002), Moss et al. (2008), Usoskin et al.

(2009a), Choudhuri and Karak (2012) and Cameron and Schüssler (2017b). For

equally interesting examples driven by deterministic dynamical nonlinearities,

see Brooke et al. (1998, 2002) For an example including both noise and

nonlinearities, see Passos et al. (2012).

An important distinction must be made between dynamos that are self-excited, in

that they can amplify an arbitrarily small magnetic field, and dynamos characterized

by a lower operating threshold on magnetic field strength. Turbulent mean-field

dynamos relying on the a-effect belong to the first category, while models relying,

e.g., on the Babcock–Leighton mechanism belong to the second. Now even if

D[Dcrit at all times, the dynamo can only operate in a finite range of magnetic

amplitude. In such a case intermittency can occur when variations of the cycle

amplitude, again either stochastic or deterministic, push the magnetic cycle

amplitude below threshold, as depicted schematically on Fig. 28 (red arrow). The

amplitude then decays to zero, and an independent inductive mechanism or source

of magnetic field is needed to push the dynamo back into normal operating mode

(A)

(B)

Fig. 29 Grand Minima and Maxima in the stochastically-forced 2D axisymmetric kinematic Babcock–
Leighton model of Olemskoy and Kitchatinov (2013). The top panel is a time–latitude diagram of the
deep toroidal magnetic component, showing an instance of Grand Minima. Panel b shows a 1-2-2-2-1
smoothed time series of magnetic cycle amplitudes. The threshold defining Grand Minima (blue) and
Maxima (red) are set at values that match the fraction of time spent in such phases, as inferred from
cosmogenic radioisotopes. Graphics kindly provided by L. Kitchatinov
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(green arrow). This is known as in–out intermittency. For examples in the context of

Babcock–Leighton models, see Charbonneau et al. (2004), Karak and Choudhuri

(2013), Passos et al. (2014), Hazra et al. (2014) and Ölçek et al. (2019); in the

context of mean-field-like models relying on instabilities of thin flux tubes,

see Schmitt et al. (1996) and Ossendrijver (2000b).

7.4 Thresholded amplitude modulation and Grand Minima/Maxima

Dearth of sunspots, such as during the Maunder Minimum, does not necessarily

mean a halted cycle. The same basic magnetic cycle may well have continued

unabated all the way through the Maunder Minimum, but at an amplitude just below

the threshold for the formation and buoyant destabilisation of magnetix flux ropes

containing sufficient magnetic flux to lead to the formation of sunspots upon

emergence at the photosphere. Strictly speaking, thresholding a variable controlled

by a single dynamical state subject to amplitude modulation is distinct from true

intermittency, although the resulting time series for the variable may well look quite

‘‘intermittent’’.

Thresholded amplitude modulation has some attractive properties as a Maunder

Minimum scenario. First, the strong hemispheric asymmetry in sunspots distribu-

tions in the final decades of the Maunder Minimum (Ribes and Nesme-Ribes 1993)

can occur naturally via parity modulation (see Fig. 25 herein). Second, because the

same cycle is operating at all times, cyclic activity in indicators other than sunspots

(such as radioisotopes, see Beer et al. 1998) is explain naturally; the dynamo is still

operating and the heliospheric magnetic field is still undergoing polarity reversal,

but simply fails to reach the amplitude threshold above which sunspots are

produced.

There are also important difficulties with this explanatory scheme. Dynamo

solutions in the small Pm regime are usually characterized by large, non-solar

angular velocity fluctuations. In such models, solar-like, low-amplitude torsional

oscillations do occur, but only for Pm
 1. Unfortunately, in this regime the

solutions then lack the separation of timescales needed for Maunder-like Grand

Minima episodes. One is stuck here with two conflicting requirements, neither of

which easily evaded; but do see Bushby (2006) and Simard and Charbonneau

(2020). Another difficulty is that Grand Minima often tend to have similar durations

and recur in periodic or quasi-periodic fashion [viz. Fig. 26)], while the sunspot and

radioisotope records, taken at face value, suggest a pattern far more irregular

(Usoskin 2008), including long periods without Grand Minima. It has been

suggested, and demonstrated with (relatively) simple nonlinear models, that this

problem may be alleviated by supermodulation (Weiss and Tobias 2016). This

refers to a deterministic, very long timescale modulation of the primary modulation

envelope of the basic decadal magnetic cycle. Grand Minima then only occur in

epochs when supermodulation has not suppressed the primary modulation (Beer

et al. 2018).
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7.5 Grand minima in MHD simulations

Global magnetohydrodynamical simulations (Sect. 6) incorporate self-consistently

both stochasticity (through the effect of small-scale turbulence) and nonlinear

magnetic backreaction. Identifying in such simulations events akin to Grand

Minima is not easy, because in most cases the large-scale magnetic cycles produced

are often not very regular to begin with. Simulation K3S of Augustson et al. (2015)

present arguably the cleanest example to date. Their basic cycle is fairly regular,

with a magnetic cycle period of 6.2 years and clear dominance of antisymmetric

(dipole-like) equatorial parity. The cycle interruption episode they observe lasts 5

half-cycles and is accompanied by a 
 50% drop in magnetic energy. It appears to

be associated with a form of destructive interference between co-existing dynamo

modes of symmetric and antisymmetric equatorial parity, akin to the type I parity

modulation mechanism discussed in Sect. 7.2.3. The intermittent interruption of

cyclic activity in the more irregular magnetic cycle building up in the extended

simulation discussed in Käpylä et al. (2016) is also interpreted as arising from

interaction between co-existing dynamo modes.

Also very relevant in this context are the rotating cartesian box MHD simulations

presented in Bushby et al. (2018). A regularly cyclic large-scale magnetic field is

generated, and in part of their parameter space undergoes intermittently recurring

Grand Minima-like episodes. These are associated with a reduction of the large-

scale vortical flow present in their simulations (see their Fig. 11), and thus can be

interpreted as an instance of type II modulation.

7.6 Fossil fields and the 22-years cycle

The presence of a large-scale, quasi-steady magnetic field of fossil origin in the

solar interior has long been recognized as a possible explanation of the Gnevyshev–

Ohl rule. Such a slowly-decaying internal fossil field being effectively steady on

solar cycle timescales, its superposition with the 11-years polarity reversal of the

overlying dynamo-generated field will lead to a 22-years modulation, whereby the

cycle is stronger when the fossil and dynamo field have the same polarity, and

weaker when these polarities are opposite (see, e.g., Boyer and Levy 1984; Boruta

1996). The magnitude of the effect is directly related to the strength of the fossil

field, versus that of the dynamo-generated magnetic field. This holds true provided

that flows and dynamical processes within the tachocline allows magnetic coupling

between the radiative core and convective envelope, which is not at all obvious (see,

e.g., Forgács-Dajka and Petrovay 2001; Kitchatinov and Rüdiger 2006; Dikpati

et al. 2005; Strugarek et al. 2011; Barnabé et al. 2017).

The fossil field explanation of the Gnevyshev–Ohl rule makes one strong

prediction: while the pattern may become occasionally lost due to large cycle

amplitude fluctuations of other origin, whenever it is present even-numbered cycles

should always be of lower amplitudes and odd-numbered cycles of higher amplitude

(under Wolf’s cycle numbering convention). The analysis of Mursula et al. (2001),

based on cycle-integrated group sunspot numbers, indicates that the odd/even

pattern has reversed between the time periods 1700–1800 and 1850–1990 (see their
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Figure 1). This would then rule out the fossil field hypothesis unless, as argued by

some authors (see Usoskin et al. 2009a, and references therein), a sunspot cycle has

been ‘‘lost’’ around 1790, at the onset of the Dalton minimum.

8 Open questions and current trends

I close this review with the following discussion of a few open questions that, in my

opinion, bear particularly heavily on our understanding (or lack thereof) of the solar

cycle.

8.1 What is the primary poloidal field regeneration mechanism?

Given the amount of effort having gone into building detailed dynamo models of the

solar cycle, it is quite sobering to reflect upon the fact that the physical mechanism

responsible for the regeneration of the poloidal component of the solar magnetic

field (T ! P) has not yet been identified with confidence. As discussed at some

length in Sects. 4 and 5, current models relying on distinct mechanisms all have

their strengths and weaknesses, in terms of physical underpinning as well as

comparison with observations. We actually have too many viable T ! P
mechanisms!

Something akin to the a-effect of mean-field electrodynamics has been measured

in a number of local and global numerical simulations including rotation and

stratification, so this certainly remains a favored magnetic field generation

mechanism. Some important caveat remain in order, notably the fact that all such

simulations operate in a parameter regime far remote from solar interior conditions,

and tend to predict much more power in large convective scales than inferred from

helioseismology—the so-called convective conundrum. Such MHD simulations

cannot yet incorporate self-consistently surface processes such as the Babcock–

Leighton mechanism in the context of simulating global magnetic cycles. On the

other hand, modelling of the evolution of the Sun’s surface magnetic flux has

abundantly confirmed that the Babcock–Leighton mechanism is operating on the

Sun, in the sense that magnetic flux liberated by the decay of tilted bipolar active

regions does accumulate in the polar regions, where it triggers polarity reversal of

the poloidal component. The key question is whether this is an active component of

the dynamo cycle, or a mere side-effect of active region decay. Likewise, the

buoyant instability of magnetic flux tubes (Sect. 4.5.3) is, in some sense,

unavoidable; here again the question is whether or not the associated azimuthal

mean electromotive force contributes significantly to dynamo action in the Sun.

8.2 What limits the amplitude of the solar magnetic field?

The amplitude of the dynamo-generated magnetic field is almost certainly restricted

by the backreaction of Lorentz forces on the driving fluid motions. However, as

outlined in Sect. 4.2, this backreaction can occur in many ways. Here as well we
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have too many potential amplitude regulation mechanisms, and we currently do not

know which physical processes regulate the magnetic amplitude of the solar cycle.

Algebraic quenching of the a-effect (or a-effect-like source terms) is the

mechanism most often incorporated in dynamo models. However, this usually has

much more to do with computational convenience than commitment to a specific

physical quenching mechanism. There is little doubt that the turbulent a-effect will
be affected once the mean magnetic field reaches equipartition; the critical question

is whether it becomes quenched long before that, for example by the small-scale

component of the magnetic field. The issue hinges on helicity conservation and flux

through boundaries, and subtleties of flow-field interaction in MHD turbulence.

Analysis of global MHD numerical simulations generating large-scale magnetic

cycles (Sect. 6) indicate that something akin to a-quenching is indeed operating, but

so is K-quenching, buoyant flux loss, as well as direct Lorentz force backrection of

the cycling large-scale magnetic field on large-scale flows. Magnetic diffusivity

quenching is less certain, with only marginally significant measurements at this

juncture. On the observational front, helioseismology has revealed only small

variations of the differential rotation profile in the course of the solar cycle. The

observed variations amount primarily to an extension in depth of the pattern of low-

amplitude torsional oscillations long known from surface Doppler measurements

(but see also Basu and Antia 2001; Toomre et al. 2003; Howe 2009). If the solar

dynamo is operating close to criticality, this may still be sufficient to saturate the

magnetic cycle.

8.3 How constraining is the sunspot butterfly diagram?

The shape of the sunspot butterfly diagram (see Fig. 2) continues to play a dominant

constraining role in many dynamo models of the solar cycle. Yet caution is in order

on this front. Calculations of the stability of toroidal flux ropes stored in the

overshoot region immediately beneath the core–envelope interface indicate that

instability is much harder to produce at high latitudes, primarily because of the

stabilizing effect of the magnetic tension force; thus strong fields at high latitudes

may well be there, but not produce sunspots. Likewise, the process of flux rope

formation from the dynamo-generated mean magnetic field is currently not

understood quantitatively, and its efficiency may well depend on latitude

(see Kitchatinov 2020, and references therein). These are all crucial questions

from the point of view of comparing results from dynamo models to sunspot data.

Until they have been answered, uncertainty remains as to the degree to which the

sunspot butterfly diagram can be compared in all details to time–latitude diagrams

of the toroidal field, as produced by this or that dynamo model. Autonomous flux

rope formation in global MHD numerical simulations (see Sect. 6.7) may shed light

on this key problem in the not-too-distant future.

8.4 Is the tachocline crucial?

Fifteen years ago, when the first version of this review was written, a near concensus

existed to the effect that the solar dynamo resides at least in part in the tachocline,
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and that it was the location of formation and storage of toroidal magnetic flux ropes

which would eventually produce bipolar magnetic regions, upon buoyant destabil-

isation, rise, and emergence as X-loops through the photosphere. This near-

concensus has been seriously shaken since, from a number of directions. First, MHD

numerical simulations have demonstrated that reasonably solar-like large-scale

decadal magnetic cycles can be generated entirely within the convective layers,

even with an impenetrable lower boundary condition; second, a subset of these same

MHD simulations have also shown that the formation of equipartition-strength flux-

rope-like buoyant magnetic structures is possible within a strongly turbulent

convection zone (viz. Sect. 6.7 herein), and that these magnetic structures retain

their coherence as they rise to the top of the domain. Third, recent stellar

observational analyses indicate that fully convective stars seem to exhibit the same

relationship between rotation rate and magnetic activity, as measured through X-ray

emission (Wright and Drake 2016, see also Blackman and Thomas 2015). This

suggests a fundamental similarity in the underlying dynamo process, and thus raises

serious doubts regarding any essential role played by a tachocline-like rotational

shear layer.

8.5 Is meridional circulation crucial?

The main question regarding meridional circulation is not whether it is there or not,

but rather what role it plays in the solar cycle. The answer hinges on the value of the

turbulent diffusivity, which is notoriously difficult to estimate with confidence. It is

probably essential in mean-field and mean-field-like dynamo models characterized

by positive a-effects in the Northern hemisphere, in order to ensure equatorward

transport of the sunspot-forming, deep-seated toroidal magnetic field (see

Sects. 4.4, 4.5, and 5.4), unless the latitudinal turbulent pumping speeds turn out

high enough to take on that role. Photospheric observations and surface flux

transport simulations (Sect. 5.2) certainly indicate that it plays a important role at

least in the evolution of the surface and interplanetary magnetic field in the course

of the solar cycle (Wang et al. 2002; Upton and Hathaway 2014a).

Some recent helioseismic measurements of meridional circulation have chal-

lenged the steady, single-cell-per-quadrant meridional flow used in most flux

transport-type mean-field and mean-field-like solar cycle models, including those

based on the Babcock–Leighton mechanism. There is hope that this debate will be

settled with upcoming improved helioseismic data and inversions. It is noteworthy

that the recent inversions that include a mass conservation constraint tend to recover

single-cell internal flows. At the modelling level, the primary unknown at this

writing is the degree to which meridional circulation is affected by the Lorentz force

associated with the dynamo-generated magnetic field. The few extant calculations

(Rempel 2006a, b) suggest that the backreaction is limited to regions of strongest

toroidal fields, so that the ‘‘conveyor belt’’ is still operating in the bulk of the

convective envelope, but this issue requires further study. Inversion of the deep

meridional flow from data assimilation into dynamo simulations (Hung et al. 2017)

is also an interesting avenue.
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8.6 Is the mean solar magnetic field really axisymmetric?

While the large-scale solar magnetic field is axisymmetric about the Sun’s rotation

axis to a good first approximation, various lines of observational evidence point to a

persistent, low-level non-axisymmetric component; such evidence includes the so-

called active longitudes (e.g., Henney and Harvey 2002), rotationally-based

periodicity in cycle-related eruptive phenomena (Bai 1987), and the shape of the

white-light corona in the descending phase of the cycle (see Dikpati et al. 2016, and

references therein).

Various mean-field-based dynamo models are known to support non-axisym-

metric modes over a substantial portion of their parameter space (see, e.g., Moss

et al. 1991; Moss 1999; Bigazzi and Ruzmaikin 2004, and references therein). At

high Rm, strong differential rotation (in the sense that CX � Ca) is known to favor

axisymmetric modes, because it efficiently destroys any non-axisymmetric compo-

nent on a timescale much faster than diffusive (/ Rm1=3 at high Rm, instead of

/ Rm). Although it is not entirely clear that the Sun’s differential rotation is strong

enough to place it in this regime (see, e.g., Rüdiger and Elstner 1994), some 3D

kinematic dynamos do show this symmetrizing effect of differential rotation (see,

e.g., Zhang et al. 2003a).

Many recent numerical 3D MHD simulations producing large-scale magnetic

cycles exhibit significant power in non-axisymmetric modes even through the

axisymmetric component may dominate (see, e.g., Racine et al. 2011, Fig. 7). The

recent simulations of Viviani et al. (2018) suggest that the non-axisymmetric modes

become dominant at rotation rates higher than solar, while the simulation analyzed

by Lawson et al. (2015) exhibits a ‘‘spontaneous’’ transition to a non-axisymmetric

configuration (see their Fig. 14), for reasons perhaps related to the development of a

non-axisymmetric MHD instability in the stable fluid layer present in their

modelling setup (see also Dikpati et al. 2016; Guerrero et al. 2019). These types of

simulations will probably offer the best handle on this question.

Another potential driver of non-axisymmetric behavior is the development of

Rossby-type waves in the tachocline (Zaqarashvili et al. 2010), an idea that has

attracted a lot of attention in recent years (see, e.g., Dikpati et al. 2018, and

references therein). To what degree such waves could impact a turbulent dynamo

operating in the overlying convecting layers remains an open question.

8.7 What causes Maunder-type Grand Minima?

At this writing, we still do not know what triggers Grand Minima, or which physical

processes control their duration and drive recovery to ‘‘normal’’ cyclic activity.

Historical researches have shown that the Sun climbed out of the Maunder

Minimum gradually, and showing strongly asymmetric activity, with nearly all

sunspots observed between 1670 and 1715 located in the Southern solar hemisphere

(see Ribes and Nesme-Ribes 1993). Some historical reconstructions of the butterfly

diagram in the pre-photographic era also suggest the presence of what could be

interpreted as a quadrupolar component (Arlt 2009). These are the kind of pattern
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that can be readily produced by nonlinear parity modulation (cf. Fig. 25 herein; see

also Tobias 1996; Beer et al. 1998; Sokoloff and Nesme-Ribes 1994; Usoskin et al.

2009b; Beer et al. 2018). Then again, in the context of an intermittency-based

model, it is quite conceivable that one hemisphere can pull out of a quiescent epoch

before the other, thus yielding sunspot distributions compatible with the aforecited

observations in the late Maunder Minimum. Such scenarios, relying on (relatively)

weak cross-hemispheric coupling, have hardly begun to be explored (Charbonneau

2005, 2007b; Chatterjee and Choudhuri 2006; Hazra and Nandy 2019).

Another possible avenue for distinguishing between these various scenarios is the

persistence of the primary cycle’s phase through Grand Minima. Generally

speaking, models relying on thresholded amplitude modulation (Sect. 7.4) can be

expected to exhibit good phase persistence across such minima, because the same

basic cycle is operating at all times (cf. Fig. 25). True intermittency, on the other

hand, should not necessarily lead to phase persistence, since the active and quiescent

phases are governed by distinct dynamics. Careful analysis of cosmogenic

radioisotope data may indicate the degree to which the solar cycle’s phase persisted

through the Maunder, Spörer, and Wolf Grand Minima, in order to narrow down the

range of possibilities.

8.8 Where do we go from here?

Recent years have witnessed a number of significant advances in solar cycle

modelling. Solar cycle models based on the Babcock–Leighton mechanism of

dipole reversal and regeneration through active region decay have undergone

spectacular developments in the past decade, and have become the favored

framework for cycle forecasting schemes based on dynamo models. In parallel,

global magnetohydrodynamical simulations of thermally-driven convection are now

generating reasonably solar-like large-scale magnetic cycles, allowing measure-

ments of the mean turbulent electromotive force, of the associated a-tensor,

turbulent diffusivity and turbulent pumping speed. Such simulations are also ideally

suited for investigating a number of important issues, such as the mechanism(s) re-

sponsible for regulating the amplitude of the solar cycle, the magnetically-driven

temporal variations of the large-scale flows important for the solar cycle, and the

possible impact of a cycling large-scale magnetic field on convective energy

transport, to mention but a few.

Despites continuing advances in computing power, global MHD simulations

remain extremely demanding, and proper simultaneous capture of important solar

cycle elements—most notably the formation, emergence and surface decay of

sunspots and active regions—are certainly not forthcoming (although do see Hotta

and Iijima 2020). It appears likely that in the foreseeable future, the simpler, mean-

field and mean-field-like solar cycle models reviewed here will remain the

workhorses of research on long timescale phenomena such as grand activity minima

and maxima, on the evolution of surface magnetic flux, on dynamo-model-based

solar cycle prediction, and on the modelling and interpretation of stellar activity

cycles.
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Barnabé R, Strugarek A, Charbonneau P, Brun AS, Zahn JP (2017) Confinement of the solar tachocline

by a cyclic dynamo magnetic field. Astron Astrophys 601:A47. https://doi.org/10.1051/0004-6361/

201630178. arXiv:1703.02374

Barnes JA, Tryon PV, Sargent HH III (1980) Sunspot cycle simulation using random noise. In: Pepin RO,

Eddy JA, Merrill RB (eds) The ancient Sun: fossil record in the earth, moon and meteorites.

Pergamon Press, New York, Geochim Cosmochim Acta Suppl., vol 13, pp 159–163

Basu S (2016) Global seismology of the Sun. Living Rev Sol Phys 13:2. https://doi.org/10.1007/s41116-

016-0003-4. arXiv:1606.07071

123

Dynamo models of the solar cycle Page 87 of 104 4

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11207-008-9306-5
https://doi.org/10.1007/s11207-008-9306-5
http://arxiv.org/abs/0812.2233
https://doi.org/10.1002/asna.200710882
https://doi.org/10.1051/0004-6361:20065192
https://doi.org/10.1088/0004-637X/809/2/149
https://doi.org/10.1088/0004-637X/809/2/149
http://arxiv.org/abs/1410.6547
https://doi.org/10.3847/1538-4357/ab14ea
https://doi.org/10.1086/147060
https://doi.org/10.1086/165105
https://doi.org/10.1111/j.1365-2966.2011.20217.x
http://arxiv.org/abs/1111.3809
https://doi.org/10.1007/s11214-014-0125-8
https://doi.org/10.1007/s11214-014-0125-8
https://doi.org/10.1051/0004-6361/201630178
https://doi.org/10.1051/0004-6361/201630178
http://arxiv.org/abs/1703.02374
https://doi.org/10.1007/s41116-016-0003-4
https://doi.org/10.1007/s41116-016-0003-4
http://arxiv.org/abs/1606.07071


Basu S, Antia HM (2001) A study of possible temporal and latitudinal variations in the properties of the

solar tachocline. Mon Not R Astron Soc 324:498–508. https://doi.org/10.1046/j.1365-8711.2001.

04364.x. arXiv:astro-ph/0101314

Baumann I, Schmitt D, Schüssler M, Solanki S (2004) Evolution of the large-scale magnetic field on the

solar surface: a parameter study. Astron Astrophys 426:1075–1091. https://doi.org/10.1051/0004-

6361:20048024

Beaudoin P, Charbonneau P, Racine E, Smolarkiewicz PK (2013) Torsional oscillations in a global solar

dynamo. Solar Phys 282:335–360. https://doi.org/10.1007/s11207-012-0150-2. arXiv:1210.1209

Beaudoin P, Simard C, Cossette JF, Charbonneau P (2016) Double dynamo signatures in a global mhd

simulation and mean-field dynamos. Astrophys J 826:138. https://doi.org/10.3847/0004-637X/826/

2/138

Beer J (2000) Long-term indirect indices of solar variability. Space Sci Rev 94(1/2):53–66. https://doi.

org/10.1023/A:1026778013901

Beer J, Tobias S, Weiss N (1998) An active Sun throughout the Maunder minimum. Solar Phys

181:237–249. https://doi.org/10.1023/A:1005026001784

Beer J, McCracken K, von Steiger R (2012) Cosmogenic radionuclides: theory and applications in the

terrestrial and space environments. In: Physics of earth and space environments. Springer, Berlin.

https://doi.org/10.1007/978-3-642-14651-0

Beer J, Tobias SM, Weiss NO (2018) On long-term modulation of the Sun’s magnetic cycle. Mon Not R

Astron Soc 473(2):1596–1602. https://doi.org/10.1093/mnras/stx2337
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Käpylä PJ, Korpi MJ, Ossendrijver M, Stix M (2006a) Magnetoconvection and dynamo coefficients. III.

a-effect and magnetic pumping in the rapid rotation regime. Astron Astrophys 455:401–412. https://

doi.org/10.1051/0004-6361:20064972. arXiv:astro-ph/0602111

123

4 Page 94 of 104 P. Charbonneau

https://doi.org/10.1126/science.aad1893
https://doi.org/10.1126/science.aad1893
https://doi.org/10.12942/lrsp-2009-1
https://doi.org/10.12942/lrsp-2009-1
http://arxiv.org/abs/0902.2406
https://doi.org/10.1086/166697
https://doi.org/10.1023/A:1005056326158
https://doi.org/10.3847/1538-4357/aa91d1
http://arxiv.org/abs/1710.02114
http://arxiv.org/abs/1710.02114
https://doi.org/10.3847/1538-4357/aa8d68
http://arxiv.org/abs/1710.08644
http://arxiv.org/abs/1710.08644
https://doi.org/10.1088/0004-637X/805/2/133
https://doi.org/10.1088/0004-637X/805/2/133
http://arxiv.org/abs/1504.08071
https://doi.org/10.1111/j.1365-2966.2007.12267.x
http://arxiv.org/abs/0707.2258
https://doi.org/10.1088/0004-637X/693/2/L96
https://doi.org/10.1088/0004-637X/693/2/L96
https://doi.org/10.1088/0004-637X/717/1/597
https://doi.org/10.1088/0004-637X/717/1/597
http://arxiv.org/abs/1005.5317
https://doi.org/10.1051/0004-6361/201016167
http://arxiv.org/abs/1102.1266
https://doi.org/10.1051/0004-6361/201321145
http://arxiv.org/abs/1304.5730
http://arxiv.org/abs/1304.5730
https://doi.org/10.1007/s11214-014-0083-1
http://arxiv.org/abs/1408.3186
http://arxiv.org/abs/1408.3186
https://doi.org/10.1051/0004-6361:20077070
http://arxiv.org/abs/0712.3200
https://doi.org/10.1051/0004-6361:20078351
https://doi.org/10.1051/0004-6361/201014455
https://doi.org/10.1051/0004-6361/201014455
http://arxiv.org/abs/1005.2283
https://doi.org/10.1088/0004-637X/762/1/4
http://arxiv.org/abs/1211.7251
https://doi.org/10.1051/0004-6361:20064972
https://doi.org/10.1051/0004-6361:20064972
http://arxiv.org/abs/astro-ph/0602111
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Kitchatinov LL, Rüdiger G, Küker M (1994) k-quenching as the nonlinearity in stellar–turbulence

dynamos. Astron Astrophys 292:125–132

Kitchatinov LL, Mazur MV, Jardine M (2000) Magnetic field escape from a stellar convection zone and

the dynamo-cycle period. Astron Astrophys 359:531–538

123

Dynamo models of the solar cycle Page 95 of 104 4

https://doi.org/10.1002/asna.200610636
https://doi.org/10.1002/asna.200610636
http://arxiv.org/abs/astro-ph/0606089
https://doi.org/10.1051/0004-6361/200811498
http://arxiv.org/abs/0812.1792
https://doi.org/10.1088/0004-637X/778/1/41
https://doi.org/10.1088/0004-637X/778/1/41
http://arxiv.org/abs/1301.2595
https://doi.org/10.1051/0004-6361/201423412
http://arxiv.org/abs/1401.2981
http://arxiv.org/abs/1401.2981
https://doi.org/10.1051/0004-6361/201527002
https://doi.org/10.1051/0004-6361/201527002
http://arxiv.org/abs/1507.05417
https://doi.org/10.1051/0004-6361/201628973
https://doi.org/10.1051/0004-6361/201628973
http://arxiv.org/abs/1605.05885
https://doi.org/10.1080/03091929.2019.1571584
http://arxiv.org/abs/1803.05898
https://doi.org/10.3847/0004-637X/832/1/94
https://doi.org/10.3847/0004-637X/832/1/94
http://arxiv.org/abs/1605.06224
https://doi.org/10.1111/j.1365-2966.2010.17531.x
http://arxiv.org/abs/1008.0824
https://doi.org/10.1088/1674-4527/13/11/005
https://doi.org/10.1088/1674-4527/13/11/005
http://arxiv.org/abs/1306.5438
https://doi.org/10.3847/1538-4357/aa8636
http://arxiv.org/abs/1706.08933
http://arxiv.org/abs/1706.08933
https://doi.org/10.1088/2041-8205/761/1/L13
https://doi.org/10.1088/2041-8205/761/1/L13
http://arxiv.org/abs/1206.2106
https://doi.org/10.1088/0004-637X/795/1/16
https://doi.org/10.1088/0004-637X/795/1/16
http://arxiv.org/abs/1406.4521
https://doi.org/10.1051/0004-6361/201424521
http://arxiv.org/abs/1407.0984
https://doi.org/10.1086/147539
https://doi.org/10.3847/1538-4357/ab7fa8
https://doi.org/10.3847/1538-4357/ab7fa8
http://arxiv.org/abs/2003.09068
https://doi.org/10.1007/s11207-011-9887-2
http://arxiv.org/abs/1108.3138
https://doi.org/10.1051/0004-6361:20064867
http://arxiv.org/abs/astro-ph/0603417
http://arxiv.org/abs/astro-ph/0603417


Kitchatinov LL, Mordvinov AV, Nepomnyashchikh AA (2018) Modelling variability of solar activity

cycles. Astron Astrophys 615:A38. https://doi.org/10.1051/0004-6361/201732549. arXiv:1804.

02833

Kleeorin N, Rogachevskii I, Ruzmaikin A (1995) Magnitude of the dynamo-generated magnetic field in

solar-type convective zones. Astron Astrophys 297:159–167

Knobloch E, Landsberg AS (1996) A new model of the solar cycle. Mon Not R Astron Soc

278(1):294–302. https://doi.org/10.1093/mnras/278.1.294

Knobloch E, Tobias SM, Weiss NO (1998) Modulation and symmetry changes in stellar dynamos. Mon

Not R Astron Soc 297:1123–1138. https://doi.org/10.1046/j.1365-8711.1998.01572.x
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