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Abstract
A review of solar cycle prediction methods and their performance is given,

including early forecasts for Cycle 25. The review focuses on those aspects of the

solar cycle prediction problem that have a bearing on dynamo theory. The scope of

the review is further restricted to the issue of predicting the amplitude (and

optionally the epoch) of an upcoming solar maximum no later than right after the

start of the given cycle. Prediction methods form three main groups. Precursor
methods rely on the value of some measure of solar activity or magnetism at a

specified time to predict the amplitude of the following solar maximum. The choice

of a good precursor often implies considerable physical insight: indeed, it has

become increasingly clear that the transition from purely empirical precursors to

model-based methods is continuous. Model-based approaches can be further divided

into two groups: predictions based on surface flux transport models and on con-

sistent dynamo models. The implicit assumption of precursor methods is that each

numbered solar cycle is a consistent unit in itself, while solar activity seems to

consist of a series of much less tightly intercorrelated individual cycles. Extrapo-
lation methods, in contrast, are based on the premise that the physical process giving

rise to the sunspot number record is statistically homogeneous, i.e., the mathe-

matical regularities underlying its variations are the same at any point of time, and

therefore it lends itself to analysis and forecasting by time series methods. In their

overall performance during the course of the last few solar cycles, precursor

methods have clearly been superior to extrapolation methods. One method that has
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yielded predictions consistently in the right range during the past few solar cycles is

the polar field precursor. Nevertheless, some extrapolation methods may still be

worth further study. Model based forecasts are quickly coming into their own, and,

despite not having a long proven record, their predictions are received with

increasing confidence by the community.
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1 Introduction

Solar cycle prediction is an extremely extensive topic, covering a very wide variety

of proposed prediction methods and prediction attempts on many different

timescales, ranging from short term (month–year) forecasts of the runoff of the

ongoing solar cycle to predictions of long term changes in solar activity on

centennial or even millennial scales. As early as 1963, Vitinsky published a whole

monograph on the subject, later updated and extended (Vitinsky 1963, 1973). More

recent overviews of the field or aspects of it include Hathaway (2009), Kane (2001),

Pesnell (2008), and the first edition of this review (Petrovay 2010b). In order to

narrow down the scope of the review, we constrain our field of interest in two

important respects.

Firstly, instead of attempting to give a general review of all prediction methods

suggested or citing all the papers with forecasts, here we will focus on those aspects

of the solar cycle prediction problem that have a bearing on dynamo theory. We will

thus discuss in more detail empirical methods that, independently of their success

rate, have the potential of shedding some light on the physical mechanism

underlying the solar cycle, as well as the prediction attempts based on solar dynamo

models.

Secondly, we will here only be concerned with the issue of predicting the
amplitude (and optionally the epoch) of an upcoming solar maximum no later than
right after the start of the given cycle. This emphasis is also motivated by the

present surge of interest in precisely this topic, prompted by the unusually long and

deep recent solar minimum and by sharply conflicting forecasts for the maximum of

the incipient solar Cycle 24.
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As we will see, significant doubts arise both from the theoretical and

observational side as to what extent such a prediction is possible at all (especially

before the time of the minimum has become known). Nevertheless, no matter how

shaky their theoretical and empirical backgrounds may be, forecasts must be

attempted. Making verifiable or falsifiable predictions is obviously the core of the

scientific method in general; but there is also a more imperative urge in the case of

solar cycle prediction. Being the prime determinant of space weather and space

climate, solar activity clearly has enormous technical, scientific, and financial

impact on activities ranging from space exploration to civil aviation and everyday

communication. Political and economic decision makers expect the solar commu-

nity to provide them with forecasts on which feasibility and profitability calculations

can be based. Acknowledging this need, around the time of solar minimum the

Space Weather Prediction Center of the US National Weather Service does present

annually or semiannually updated ‘‘official’’ predictions of the upcoming sunspot

maximum, emitted by a Solar Cycle Prediction Panel of experts. The unusual lack

of consensus in the early meetings of this panel during the previous minimum

(SWPC 2009), as well as the concurrent, more frequently updated but wildly

varying predictions of a NASA MSFC team (MSFC 2017) made evident the

deficiencies of prediction techniques available at the time. In view of this, Cycle 24

provided us with some crucial new insights into the physical mechanisms

underlying cyclic solar activity. In preparation to convene the Solar Cycle 25

Prediction Panel a new call for predictions was issued in January 2019 (Biesecker

and Upton 2019).

While a number of indicators of solar activity exist, by far the most commonly

employed is still the smoothed relative sunspot number R; the ‘‘Holy Grail’’ of

sunspot cycle prediction attempts is to get R right for the next maximum. We,

therefore, start by briefly introducing the sunspot number and inspecting its known

record. Then, in Sects. 2–4 we discuss the most widely employed methods of cycle

predictions. Section 5 presents a summary evaluation of the past performance of

different forecasting methods, while Sect. 6 finally collects some early forecasts for

Cycle 25 derived by various approaches.

1.1 What’s new in this edition?

For readers familiar with the 1st edition of this review, who would prefer to go

through the ‘‘new stuff’’ only, here I briefly list the new or thoroughly rewritten

sections.

The revision of the sunspot number series that took place in 2015 is one topic that

had to be discussed in detail. The new Sect. 1.2.2 is devoted to this subject but other

parts of Sects. 1.2 and 1.3 have also been subjected to a major revision.

For reasons explained in Sect. 1.5, the overall structure of the review has been

given a major overhaul: the section on extrapolation methods has now been placed

after the section on model-based approaches.

Researches into the origins of the sudden change in the behaviour of our Sun

from Cycle 23–24 led to important, although still poorly understood realizations,

now discussed in a dedicated subsection (Sect. 2.2). And the stellar rise in
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popularity of the polar precursor led to such an amount of exciting new research that

Sect. 2.3, discussing this method, had to be completely rewritten and expanded;

furthermore, it gave rise to another section on ‘‘The quest for a precursor of the

polar precursor’’ (Sect. 2.5), containing mostly new or thoroughly updated material.

The section on model-based predictions now includes a presentation of the

approach based on surface flux transport models (Sect. 3.1). In the field of dynamo-

based cycle prediction the major novelty in this decade was the development of

nonaxisymmetric models capable to account for the emergence of individual active

regions: a new subsection is now devoted to this topic (Sect. 3.4.2).

Finally, the updated summary evaluation and the overview of early predictions

for Cycle 25 obviously cover mostly new results (Sects. 5, 6).

1.2 The sunspot number (SSN)

Despite its somewhat arbitrary construction, the series of relative sunspot numbers

constitutes the longest homogeneous global indicator of solar activity determined by

direct solar observations and by methods that were, until recently, perceived to be

carefully controlled. For this reason, their use is still predominant in studies of solar

activity variation.

As aptly noted by Clette et al. (2014), until recently the sunspot number series

was ‘‘assumed to be carved in stone, i.e., it was considered largely as a

homogeneous, well-understood and thus immutable data set. This feeling was

probably reinforced by the stately process through which it was produced by a

single expert center at the Zürich Observatory during 131 years.’’

This perception has now been shattered by the major revision of the official

sunspot number series that took place in 2015, and opened the way to further

periodic revisions.

In what follows, the original series, the revision, and transformed versions of the

series will be discussed in turn.

1.2.1 Version 1.0

As defined originally by Wolf (1850), the relative sunspot number is

RZ ¼ kð10 g þ f Þ; ð1Þ

where g is the number of sunspot groups (including solitary spots), f is the total

number of all spots visible on the solar disc, while k is a correction factor depending

on a variety of circumstances, such as instrument parameters, observatory location,

and details of the counting method. Wolf, who decided to count each spot only once

and did not count the smallest spots, used k ¼ 1. He also introduced a hierarchical

system for the determination of RZ where data from a list of auxiliary observers

were used for days when the primary observer (Zürich) could not provide a value.

The counting system employed in Zürich was changed by Wolf’s successors to

count even the smallest spots, attributing a higher weight (i.e., f [ 1) to spots with a

penumbra, depending on their size and umbral structure. (The exact details and
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timing of these changes are incompletely documented and controversial, see

discussion in the next subsection.) As the changes in the counting and the regular

use of a larger telescope naturally resulted in higher values, the Zürich correction

factor was set to k ¼ 0:6 for subsequent determinations of RZ to ensure continuity

with Wolf’s work. (Waldmeier 1961; see also Izenman 1983; Kopecký et al. 1980;

Hoyt and Schatten 1998; Friedli 2016 for further discussions on the determination of

RZ).

In addition to introducing the relative sunspot number, Wolf (1861) also used

earlier observational records available to him to reconstruct its monthly mean values

since 1749. In this way, he reconstructed 11-year sunspot cycles back to that date:

hence, the now universally used numbering of solar cycles starts with the first

complete cycle in the monthly RZ series. In a later work he also determined annual

mean values for each calendar year going back to 1700. This reconstruction and

calibration work took place in several steps, so the RZ record was very much a

project in the making until the end of the nineteenth century (see Clette et al. 2014).

It was only from the early twentieth century that the series came to be regarded as

‘‘carved in stone’’.

In 1981, the observatory responsible for the official determination of the sunspot

number changed from Zürich to the Royal Observatory of Belgium in Brussels. The

website of the SIDC1 (originally Sunspot Index Data Center, recently renamed Solar

Influences Data Analysis Center) is now the most authoritative source of archive

sunspot number data. The department of SIDC formally responsible for the sunspot

number series is WDC-SILSO (World Data Centre for Sunspot Index and Long-

term Solar Observations). It has become customary to denote the original Zürich

series with RZ (‘‘the Zürich sunspot number’’), and its continuation by the SIDC

from 1981 to 2015 with Ri (International Sunspot Number, ISN). The new, revised

series is conventionally denoted by SN .

It must be kept in mind that since the middle of the twentieth century, the sunspot

number is also regularly determined by other institutions: the most widely used such

variants are informally known as the American sunspot number (collected by

AAVSO and available from the National Geophysical Data Center2) and the

Kislovodsk Sunspot Number (available from the web page of the Kislovodsk

Mountain Astronomical Station of Pulkovo Observatory3).

Given that RZ is subject to large fluctuations on a time scale of days to months, it

has become customary to use annual mean values for the study of longer term

activity changes. To get rid of the arbitrariness of calendar years, the standard

practice4 is to use 13-month boxcar averages of the monthly averaged sunspot

numbers, wherein the first and last months are given half the weight of other

months:

1 http://sidc.oma.be.
2 http://www.ngdc.noaa.gov/ngdc.html.
3 http://en.solarstation.ru/.
4 Alternative proposals have been put forward by Muñoz-Jaramillo et al. (2012) and Podladchikova et al.

(2017); who pointed out that Eq. (2) does a poor job of filtering out high-frequency variations, and use

better or even optimized weight factors for the Rm;i’s instead.
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R ¼ 1

24
Rm;�6 þ 2

Xi¼5

i¼�5

Rm;i þ Rm;6

 !
; ð2Þ

Rm;i being the mean monthly value of the daily sunspot number values for ith
calendar month counted from the present month. It is this running mean R that we

will simply call ‘‘the sunspot number’’ throughout this review and what forms the

basis of most discussions of solar cycle variations and their predictions.

In what follows, R
ðnÞ
max and R

ðnÞ
min will refer to the maximum and minimum value of

R in cycle n (the minimum being the one that starts the cycle). Similarly, t
ðnÞ
max and

t
ðnÞ
min will denote the epochs when R takes these extrema.

1.2.2 Revision

The process that led to the 2015 revision was started by Leif Svalgaard (Stanford)

who pointed out a number of inhomogeneities in the series, rooted in changes in the

base data and processing techniques. Starting from 2011, at Svalgaard’s initiative, a

series of four workshops on the sunspot number were held by the community

involved. The 2015 revision is the result of this process. The motivation for and the

detailed process of the revision was described by Clette et al. (2014) and Clette and

Lefèvre (2016) and discussed in a number of papers in a topical issue of Solar
Physics (vol. 291, issue 9–10; Clette et al. 2016a).

The revision included dropping the k ¼ 0:6 scaling factor traditionally applied to

the Zürich data, so all values increased by a factor of 5
3
. In addition to this trivial

rescaling and some other minor changes, three major corrections were implemented.

(a) The Locarno drift after 1981. The determination of the International Sunspot

Number Ri by the SIDC did not follow Wolf’s hierarchical system, taking into

account observations from all network stations and only dropping outliers.

Nevertheless, in order to ensure continuity, the Locarno solar observatory

(Zürich’s successor) still had a special role as a pilot station, all other

observers being calibrated to Locarno’s scale. A slow time-varying drift in the

Locarno data came to light during the revision process and has been corrected

in the new series. This change is apparently uncontroversial and was made

with the full consensus of all actors involved (Clette et al. 2016b).

(b) The ‘‘Waldmeier jump’’ from 1947. Plotting the original Zürich sunspot

numbers against other sunspot-related indices such as sunspot areas or group

numbers, or even against non-weighted sunspot numbers determined by non-

Zürich observers, a jump was discovered which was suggested to originate in

the introduction of a new weighting method (in use in Locarno until the

present day) by the new Zürich director, Max Waldmeier and his largely new

staff. Under current solar conditions the weighting results in a 15–20%

inflation of the sunspot numbers (Svalgaard et al. 2017). This assumed

inflation of the series has now been corrected.

(c) The Schwabe–Wolf transition (1849–1864) The upward correction of 14%

applied in this period relies primarily on a comparison of the original sunspot
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number series with group sunspot numbers (the result being apparently

insensitive to which group number series is used). The presumed cause of the

discrepancy is that in this period the sunspot number was determined by Wolf

using small portable telescopes, while Schwabe also continued his observa-

tions. For days not covered by his own observations Wolf used Schwabe’s

data without marking these out. It was only in 1861 that, upon cross-

correlating their data Wolf determined a correction factor k ¼ 1:25 for

Schwabe, which he also applied retrospectively to the pre-1849 observations

of Schwabe (and, by inference, of earlier observers calibrated to Schwabe).

However, the correction factor was apparently not considered for his own

observations (mixed with Schwabe’s) in the period before the early 1860s.

The revised series, introduced from 1 July 2015, is now considered version 2.0 of

the sunspot number series. Further corrections, with proper version tracking, are

expected as early data may contain other inconsistencies, and the corrections

applied in v2.0 were somewhat crude. In particular, recomputation of the whole

series from observational data, wherever available, is planned. The process has now

been placed under the ægis of the IAU, with a dedicated Working Group

‘‘Coordination of Synoptic Observations of the Sun’’ focusing on the validation and

accreditation process of new SSN versions.

A further possible bias in the series that remains to be corrected may concern the

counting of sunspot groups. While in earlier parts of the series physical closeness of

spots was considered a sufficient criterion, since the mid-twentieth century

evolutionary information is also taken into account, sometimes resulting in the

division into several groups of what would have been considered as a single group

by early observers. Svalgaard et al. (2017) estimate that this effect may have

inflated Waldmeier’s sunspot numbers by 4–5% relative to earlier counts, while the

effect on the late eighteenth century sunspot reconstruction of the SSN by Wolf

based on the drawings of Staudacher may be even larger, reaching 25% (Svalgaard

2017). On the other hand, Izenman (1983) notes that Waldmeier’s authoritative

1965 edition of the RZ series does contain slight corrections also to the data

published previously, in 1925 by Wolfer. (One might also consider this as a

surreptitious earlier minor ‘‘revision’’ of the SSN.) This shows that Waldmeier

himself was very much concerned with the long-term homogeneity of the data,

already taking some measures to homogenize the data processing.

Amidst all the revision fervour, some caveatsmay still be in order. On the one hand,

for the current generation of solar physicists it is abundantly clear that our Sun is

capable of rather sudden unexpected changes and that a varying ratio between

different activity indices (even just those related to sunspots) can be a real, physical

feature (Georgieva et al. 2017; see also Sect. 2.2 below). Suggestions for revisions

based purely on variations or jumps in the ratio of the sunspot number to other indices

are therefore to be treated with strong caution as it may potentially bias understanding

of the physical processes involved. Second, having superior instruments does not

entitle us to thinkwe are smarter than our predecessors were, or thatwe know their data

better than they themselves did. Information lost and unknown considerations may

well explain practices that, in retrospect, seem incorrect to us. Even in the case of the
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already implemented corrections (b) and (c) some nagging questions do remain and

need further exploration (Clette and Lefèvre 2016).

The significant disagreements between determinations of the SSN by various

observatories, observers and methods are even more pronounced in the case of

historical data, especially prior to the mid-nineteenth century. In particular, the

controversial suggestion that a whole solar cycle may have been missed in the official

sunspot number series at the end of the eighteenth century is taken by some as glaring

evidence for the unreliability of early observations. Note, however, that independently

of whether the claim for a missing cycle is well founded or not, there is clear evidence

that this controversy ismostly due to the very atypical behaviour of the Sun itself in the

given period of time, rather than to the low quality and coverage of contemporary

observations. These issues will be discussed further in Sect. 4.2.2.

1.2.3 Alternating series and nonlinear transforms

Instead of the ‘‘raw’’ sunspot number series R(t) many researchers prefer to base

their studies on some transformed index R0. The motivation behind this is twofold.

(a) The strongly peaked and asymmetrical sunspot cycle profiles strongly deviate

from a sinusoidal profile; also the statistical distribution of sunspot numbers is

strongly at odds with a Gaussian distribution. This can constitute a problem as

many common methods of data analysis rely on the assumption of an

approximately normal distribution of errors or nearly sinusoidal profiles of

spectral components. So transformations of R (and, optionally, t) that reduce
these deviations can obviously be helpful during the analysis. In this vein,

e.g., Max Waldmeier often based his studies of the solar cycle on the use of

logarithmic sunspot numbers R0 ¼ logR; many other researchers use R0 ¼ Ra

with 0:5� a\1, the most common value being a ¼ 0:5.
(b) As the sunspot number is a rather arbitrary construct, there may be an

underlying more physical parameter related to it in some nonlinear fashion,

such as the toroidal magnetic field strength B, or the magnetic energy,

proportional to B2. It should be emphasized that, contrary to some claims, our

current understanding of the solar dynamo does not make it possible to guess

what the underlying parameter is, with any reasonable degree of certainty. In

particular, the often used assumption that it is the magnetic energy, lacks any

sound foundation. If anything, on the basis of our current best understanding

of flux emergence we might expect that the amount of toroidal flux emerging

from the tachocline should be
R
jB � B0j dA where B0 is some minimal

threshold field strength for Parker instability and the surface integral goes

across a latitudinal cross section of the tachocline (cf. Ruzmaikin 1997;

indeed, a generalized linear R–B link involving a threshold field strength has

now also been used in the dynamo models of Pipin and Sokoloff 2011 and

Pipin et al. 2012). As, however, the lifetime of any given sunspot group is

finite and proportional to its size (Petrovay and van Driel-Gesztelyi 1997;

Henwood et al. 2010), instantaneous values of R or the total sunspot area

should also depend on details of the probability distribution function of B in
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the tachocline. This just serves to illustrate the difficulty of identifying a

single physical governing parameter behind R.

One transformation that may still be well motivated from the physical point of view

is to attribute an alternating sign to even and odd Schwabe cycles: this results in the

the alternating sunspot number series R�. The idea is based on Hale’s well known

polarity rules, implying that the period of the solar cycle is actually 22 years rather

than 11 years, the polarity of magnetic fields changing sign from one 11-year

Schwabe cycle to the next. In this representation, first suggested by Bracewell

(1953), usually odd cycles are attributed a negative sign. This leads to slight jumps

at the minima of the Schwabe cycle, as a consequence of the fact that for a 1–2 year

period around the minimum, spots belonging to both cycles are present, so the value

of R never reaches zero; in certain applications, further twists are introduced into the

transformation to avoid this phenomenon.

After first introducing the alternating series, in a later work Bracewell (1988)

demonstrated that introducing an underlying ‘‘physical’’ variable RB such that

R� ¼ 100 RB=83ð Þ3=2 ð3Þ

(i.e., a ¼ 2=3 in the power law mentioned in item (a) above) significantly simplifies

the cycle profile. Indeed, upon introducing a ‘‘rectified’’ phase variable5 / in each

cycle to compensate for the asymmetry of the cycle profile, RB is a nearly sinusoidal

function of /. The empirically found 3/2 law is interpreted as the relation between

the time-integrated area of a typical sunspot group vs. its peak area (or peak RZ

value), i.e., the steeper than linear growth of R with the underlying physical

parameter RB would be due to the larger sunspot groups being observed longer, and

therefore giving a disproportionately larger contribution to the annual mean sunspot

numbers. If this interpretation is correct, as suggested by Bracewell’s analysis, then

RB should be considered proportional to the total toroidal magnetic flux emerging

into the photosphere in a given interval. (But the possibility must be kept in mind

that the same toroidal flux bundle may emerge repeatedly or at different helio-

graphic longitudes, giving rise to several active regions.)

1.3 Other indicators of solar activity

1.3.1 Group sunspot number (GSN)

Reconstructions of R prior to the early nineteenth century are increasingly uncertain.

In order to tackle problems related to sporadic and often unreliable observations, Hoyt

and Schatten (1998) introduced the Group Sunspot Number (GSN) as an alternative

indicator of solar activity. In contrast to the SSN, the GSN only relies on counts of

sunspot groups as a more robust indicator, disregarding the number of spots in each

group. Furthermore, while RZ was determined for any given day from a single

observer’smeasurements (a hierarchy of auxiliary observerswas defined for the case if

5 The more precise condition defining / is that / ¼ � p=2 at each maximum and / is quadratically

related to the time since the last minimum.
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data from the primary observerwere unavailable), theGSNuses aweighted average of

all observations available for a given day. A further advantage is that, in addition to the

published series, all the raw data upon which it is based are made public.

The GSN series published by Hoyt and Schatten (1998) remained unchanged

until the 2010s when it was taken under revision in concert with the SSN revision

discussed above. As in the case of the GSN there is no generally accepted

responsible organization, i.e., no ‘‘official’’ series, revisions were undertaken by

several teams, leading to conflicting results.6

The common denominator of all efforts to reconstruct the GSN is (or should be)

the common set of observations upon which the construction of the series is based.

This observational data set has been greatly extended in the past two decades thanks

to the discovery and/or publication of many previously inaccessible historical

sources. An update of the database providing a good basis for subsequent efforts to

construct a GSN series was compiled by Vaquero et al. (2016). This archive is now

available from the SILSO site and from the Historical Archive of Sunspot

Observations (HASO)7. (In principle, a regular upgrade is planned, with version

numbers, v1.0 referring to Hoyt and Schatten, but the project is currently stuck at

version 1.12 dated May 2016.)

The original method of Hoyt and Schatten (1998) was subject to a random drift of

the mean group number over long timescales. While consistent use of the Greenwich

Photoheliograph Results, available from 1874, helped to avoid such a drift in the

twentieth century, a drift already appears from the late nineteenth century back, owing

to the still evolving techniques of photography used at Greenwich. As a result, group

numbers before this period may be systematically lower than what the SSN would

suggest. This was the main issue motivating a revision of the GSN series.

New GSN series were compiled by Svalgaard and Schatten (2016) and by

Usoskin et al. (2016) using two alternative methods: the backbone method and a

method based on active day fraction (ADF) statistics. The backbone method resulted

in significantly elevated GSN values before about 1900, while the ADF method

resulted in a series closer to the original Hoyt & Schatten values. Both of these

methods have been subject to criticisms (Cliver 2016; Willamo et al. 2017, 2018).

Finally, Chatzistergos et al. (2017) came up with a variety of the backbone method

with an improved methodology for the fitting of successive backbones, resulting in

an intermediate series. At the time of writing, this ‘‘ultimate backbone’’ GSN

series (Fig. 1), available at CDS,8 seems to be the most recommendable version for

further analysis.

The GSN series has been reproduced for the whole period since 1611 and it is

generally agreed that for the period 1611–1818 it is a more reliable reconstruction of

solar activity than the relative sunspot number. Yet there have been relatively few

attempts to date to use this data series for solar cycle prediction.

6 Note that Hoyt and Schatten (1998) included a coefficient of 12.08 in the definition of their GSN in

order to bring it the same scale as the SSN; this coefficient has been omitted in the more recent

reconstructions, sometimes leading to some confusion regarding the scale applied.
7 http://haso.unex.es/.
8 http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A?A/602/A69 (or via the paper’s ADS link).
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1.3.2 Other sunspot data

The classic source of sunspot area and position data is the Greenwich Photohe-

liographic Results (GPR) catalogue,9 covering the period 1874–1976. The official

continuation of the GPR is the Debrecen Photoheliographic Data (DPD)

catalogue,10 commissioned by the IAU and containing data from 1973 (Baranyi

et al. 2016; Gy}ori et al. 2017). The Debrecen database also includes a revised/

enriched version of the GPR in the same format as the DPD. Another GPR

extension, with USAF/NOAA data, covering the period 1874–2019 is available

from a website maintained by NASA MSFC staff.11 Sunspot data from many other

observatories are also available at the NGDC site.

Recent years have seen a surge in the digitization and processing of sunspot

drawings made before the photographic era. A major role in this work has been

played by a team in Potsdam led by Rainer Arlt (Arlt 2008; Arlt et al. 2013; Diercke

et al. 2015). As a result sunspot positions (butterfly diagrams) have now been

reconstructed for the period 1826–1880 from drawings by Schwabe and Spörer

(Leussu et al. 2016, 2017); for the period 1749–1796 from drawings by Staudacher

(Arlt 2009); for the period 1670–1711 from scattered information (Vaquero et al.

2015b; Neuhäuser et al. 2018); and for the period 1611–1631 from drawings by

Scheiner and Galileo (Arlt et al. 2016; Vokhmyanin and Zolotova 2018).

Instead of the sunspot number, the total area of all spots observed on the solar

disk might seem to be a less arbitrary measure of solar activity. However, these data

have been available since 1874 only, covering a much shorter period of time than

the sunspot number data. In addition, the determination of sunspot areas, especially

farther from disk center, is not as trivial as it may seem, resulting in significant

random and systematic errors in the area determinations. Area measurements

performed in two different observatories often show discrepancies reaching � 30%

for smaller spots (cf. the figure and discussion in Appendix A of Petrovay et al.

1999). Despite these difficulties, attempts at reconstructing sunpot areas have also

Fig. 1 Annual means of the group sunspot number reconstructed by Chatzistergos et al. (2017) (solid red
curve). Values before 1749 (dashed black) were taken from the reconstruction by Svalgaard and Schatten
(2016), multiplied by a fiducial factor 0.85 to align the two curves in 1750 and to bring the GSN and SSN
(dash-dotted green) into better agreement in the early eighteenth century

9 https://www.ngdc.noaa.gov/stp/solar/solardataservices.html.
10 http://fenyi.solarobs.csfk.mta.hu/en/databases/Summary/.
11 http://solarcyclescience.com/activeregions.html.
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been made (Carrasco et al. 2016; Senthamizh Pavai et al. 2015), and Muraközy

et al. (2016) recently proposed a new activity index based on a calibration of the

emerged magnetic flux to sunspot areas.

1.3.3 Other activity indices

A number of other direct indicators of solar activity have become available from the

twentieth century (see Ermolli et al. 2014 for a recent review). These include, e.g.,

various plage indices or the 10.7 cm solar radio flux—the latter is considered a

particularly good and simple to measure indicator of global activity (see Fig. 2). As,

however, these data sets only cover a few solar cycles, their impact on solar cycle

prediction has been minimal. A promising exception from this is the nearly three

centuries long record of the solar EUV flux, recently reconstructed from the diurnal

variation of the geomagnetic field by Svalgaard (2016).

Of more importance are proxy indicators such as geomagnetic indices (the most

widely used of which is the aa index), the occurrence frequency of aurorae or the

abundances of cosmogenic radionuclides such as 14C and 10Be in natural archives.

For solar cycle prediction uses such data sets need to have a sufficiently high

temporal resolution to reflect individual 11-year cycles. For the geomagnetic indices

such data have been available since 1868, while an annual 10Be series covering 600

years has been published by Berggren et al. (2009). Attempts have been made to

reconstruct the epochs and even amplitudes of solar maxima during the past two

millennia from oriental naked eye sunspot records and from auroral observations

(Stephenson and Wolfendale 1988; Nagovitsyn 1997), but these reconstructions are

currently subject to too many uncertainties to serve as a basis for predictions.

Isotopic data with lower temporal resolution are now available for up to 50 000

years in the past; while such data do not show individual Schwabe cycles, they are

Fig. 2 Monthly values of the 10.7 cm radio flux in solar flux units for the period 1947–2017. The solar

flux unit is defined as 10�22 W/m2 Hz. The dashed green curve shows the monthly mean relative sunspot
number Rm for comparison. Data are from the NRC Canada (Ottawa/Penticton)
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still useful for the study of long term variations in cycle amplitude. Inferring solar

activity parameters from such proxy data is generally not straightforward. (See

review by Usoskin 2017.)

1.4 The solar cycle and its variation

The series of R values determined as described in Sect. 1.2 is plotted in Fig. 3. It is

evident that the sunspot cycle is rather irregular. The mean length of a cycle (defined

as lasting from minimum to minimum) is 11.0 years (median 10.9 years), with a

standard deviation of 1.16 years; actual cycle lengths scatter in the range 9.0–13.6

years. Note that cycle lengths measured between successive maxima show a wider

scatter, in the range 7.3 and 16.9 years. This is partly due to the fact that many

cycles show a double maximum, the two sub-peaks being separated by 1–2 years.

The mean cycle amplitude in terms of R is 179 (median 183),12 with a standard

Fig. 3 The variation of the monthly smoothed relative sunspot number R during the period 1749–2009,
with the conventional numbering of solar cycles, for SSN version 2 (black solid) and for SSN version 1
(yellow dashed)

12 Here and in the rest of this paper R will normally refer to Version 2 values, unless explicitly noted.
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deviation of 57. It is this wide variation that makes the prediction of the next cycle

maximum such an interesting and vexing issue.

1.4.1 Secular activity variations

Inspecting Fig. 3 one can discern an obvious long term variation. For the study of

such long term variations, the series of cycle parameters is often smoothed on time

scales significantly longer than a solar cycle: this procedure is known as secular
smoothing. One popular method is the so-called Gleissberg filter or 12221 filter
(Gleissberg 1967). For instance, the Gleissberg filtered amplitude of cycle n is given

by

hRmaxiðnÞG ¼ 1

8
Rðn�2Þ
max þ 2Rðn�1Þ

max þ 2RðnÞ
max þ 2Rðnþ1Þ

max þ Rðnþ2Þ
max

� �
: ð4Þ

The Gleissberg filtered series of solar cycles is plotted in Fig. 4. The most

obvious feature of the variation is a cyclic modulation of the cycle amplitudes on a

timescale of � 9–10 solar cycles. This so-called Gleissberg cycle will be discussed

further in Sect. 4.2.3. The first minimum of this cycle plotted in Fig. 4, known as the

‘‘Dalton Minimum’’, is formed by the unusually weak cycles 5, 6, and 7. The second

secular minimum consists of a rather long series of moderately weak cycles 12–16,

occasionally referred to as the [last] ‘‘Gleissberg Minimum’’—but note that most of

these cycles are less than 1 r below the long-term average value given at the start of

Sect. 1.4.

Finally the last secular maximum of the cycle comprises the series of strong

cycles 17–23 in the second half of the twentieth century: the ‘‘Modern Maximum’’.

In addition to this cyclic modulation there is a tendency for an overall secular

increase of solar activity in the figure: the Modern Maximum is clearly stronger than

previous maxima. However, the strength of this secular increase in the activity level

as well as the amount by which the Modern Maximum exceeds previous maxima of

the Gleissberg cycle clearly depends on the reconstruction of the measure of activity

chosen. The revision of the sunspot numbers has greatly reduced the amount of

secular increase compared to Version 1.0, in agreement with the GSN reconstruc-

tion by Svalgaard and Schatten (2016). On the other hand the most recent GSN

reconstruction (Chatzistergos et al. 2017) shows a marked long-term increasing

trend again. The cosmogenic record rather unequivocally indicates that the

persistently high level of solar activity characterizing the second half of the

twentieth century had no precedent for thousands of years in the history of solar

activity (cf. Table 3 in Usoskin 2017). The currently hotly debated problem of the

strength of the Modern Maximum has important implications, e.g., for the

understanding of the role of solar forcing in global warming (Lean and Rind 2008;

Chylek et al. 2014; Nagy et al. 2017b; Owens et al. 2017). In this context it is

important to stress that a secular increase in solar activity from the late nineteenth

century (beginning of terrestrial global temperature record) to the mid-twentieth

century is unquestionably present in all solar activity reconstructions. The
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decreasing trend displayed in the last few decades in the smoothed cycle amplitude

series is also potentially important in this respect.

While the Dalton and Gleissberg minima are just local minima in the ever

changing Gleissberg filtered SSN series, the conspicuous lack of sunspots in the

period 1640–1705, known as the Maunder Minimum (Fig. 1) quite obviously

represents a qualitatively different state of solar activity. Such extended periods of

low activity are usually referred to as grand minima. Ever since the rediscovery of

the Maunder Minimum in the late nineteenth century (Maunder 1894; Eddy 1976)

its reality and significance has time to time been brought into question. Recent

studies have shown that the 11/22-year solar cycle persisted during the Maunder

Minimum, but at a greatly suppressed level (Usoskin et al. 2015; Vaquero et al.

2015a; Asvestari et al. 2017). A number of possibilities have been proposed to

explain the phenomenon of grand minima, including chaotic behaviour of the

nonlinear solar dynamo (Weiss et al. 1984), stochastic fluctuations in dynamo

parameters (Moss et al. 2008; Usoskin et al. 2009b); a bimodal dynamo with

stochastically induced alternation between two stationary states (Petrovay 2007) or

stochastic effects like fluctuations in AR tilt (Karak and Miesch 2018) or ‘‘rogue’’

sunspots (Petrovay and Nagy 2018).

The analysis of long-term proxy data, extending over several millennia further

showed that there exist systematic long-term statistical trends and periods such as

the so called secular and supersecular cycles (see Sect. 4.2).

Fig. 4 Amplitudes of the sunspot cycles (dotted) and their Gleissberg filtered values (blue solid), plotted
against cycle number. The shaded area marks a �2r band around the mean amplitude for cycles 17–23
comprising the Modern Maximum. For comparison, Gleissberg filtered cycle amplitudes are also shown
for unrevised [v1.0] SSN data (blue dashed) and for two GSN reconstructions (red solid: Chatzistergos
et al. 2017; red dashed: Svalgaard and Schatten 2016). (In the case of the two GSN series, amplitudes and
dates for cycle maxima were determined from the 121 filtered annual data.)
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1.4.2 Does the Sun have a long term memory?

The existence of long lasting grand minima and maxima suggests that the sunspot

number record may have a long-term memory extending over several consecutive

cycles. Indeed, elementary combinatorical calculations show that the occurrence of

phenomena like the Dalton minimum (3 of the 4 lowest maxima occurring in a row)

in a random series of 24 recorded solar maxima has a rather low probability (5%).

This conclusion is supported by the analysis of long-term proxy data, extending over

several millennia, which showed that the occurrence of grand minima and (perhaps)

grand maxima is more common than what would follow from Gaussian statistics

(Usoskin et al. 2007; Wu et al. 2018).

It could be objected that for sustained grand minima or maxima a memory

extending only from one cycle to the next would suffice. This intercycle memory

explanation of persistent secular activity minima and maxima, however, would

imply a good correlation between the amplitudes of subsequent cycles, which is not

the case (cf. Sect. 2.1). With the known poor cycle-to-cycle correlation, strong

deviations from the long-term mean would be expected to be damped on time scales

short compared to, e.g., the length of the Maunder minimum. This suggests that the

persistent states of low or high activity may be due to truly long term memory

effects extending over several cycles.

In an analysis of the GSN series for the period 1799–2011 Love and Rigler

(2012) found that the sequence of cycle maxima (and also of time-integrated

activity in each cycle), including the Modern Maximum, would not be an unlikely

result of the accumulation of multiple random-walk steps in a lognormal random

walk of cycle amplitudes where lnR performs a Gaussian random walk with mean

stepsize 0.39 (or 0.28 for the integrated activity). This analysis, however, does not

extend to the Maunder Minimum; and in any case, such a random walk should

ultimately take the values of R up to arbitrarily high values in sufficiently long time,

whereas the cosmogenic record clearly shows that the level of activity is bounded

from above.

Further evidence for a long-term memory in solar activity comes from the

persistence analysis of activity indicators. The parameter determined in such studies

is the Hurst exponent 0\H\1. Essentially, H is the steepness of the growth of the

total range R of measured values plotted against the number n of data in a time

series, on a logarithmic plot: R / nH . For a Markovian random process with no

memory H ¼ 0:5. Processes with H [ 0:5 are persistent (they tend to stay in a

stronger-than-average or weaker-than-average state longer), while those with

H\0:5 are anti-persistent (their fluctuations will change sign more often).

Hurst exponents for solar activity indices have been derived using rescaled range

analysis by many authors (Mandelbrot and Wallis 1969; Ruzmaikin et al. 1994;

Komm 1995; Oliver and Ballester 1996; Kilcik et al. 2009; Rypdal and Rypdal

2012). All studies coherently yield a value H ¼ 0:85�0:88 for time scales

exceeding a year or so, and somewhat lower values (H � 0:75) on shorter time

scales. Some doubts regarding the significance of this result for a finite series have

been raised by Oliver and Ballester (1998); however, Qian and Rasheed (2004) have
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shown using Monte Carlo experiments that for time series of a length comparable to

the sunspot record, H values exceeding 0.7 are statistically significant.

A complementary method, essentially equivalent to rescaled range analysis is

detrended fluctuation analysis. Its application to solar data (Ogurtsov 2004) has

yielded results in accordance with the H values quoted above.

The overwhelming evidence for the persistent character of solar activity and for

the intermittent appearance of secular cyclicities, however, is not much help when it

comes to cycle-to-cycle prediction. It is certainly reassuring to know that

forecasting is not a completely idle enterprise (which would be the case for a

purely Markovian process), and the long-term persistence and trends may make our

predictions statistically somewhat different from just the long-term average. There

are, however, large decadal scale fluctuations superposed on the long term trends, so

the associated errors will still be so large as to make the forecast of little use for

individual cycles.

1.4.3 Waldmeier effect and amplitude–frequency correlation

Greater activity on the Sun goes with shorter periods, and less with longer

periods. I believe this law to be one of the most important relations among the

Solar actions yet discovered.

(Wolf 1861)

It is apparent from Fig. 3 that the profile of sunspot cycles is asymmetrical, the rise

being steeper than the decay. Solar activity maxima occur 3 to 4 years after the

minimum, while it takes another 7–8 years to reach the next minimum. It can also be

noticed that the degree of this asymmetry correlates with the amplitude of the cycle:

Fig. 5 Monthly smoothed sunspot number R at cycle maximum plotted against the rise time to maximum
(left) and against cycle length (right). Cycles are labeled with their numbers. In the plots the red dashed
lines are linear regressions to all the data, while the blue solid lines are fits to all data except outliers.
Cycle 19 is considered an outlier on both plots, Cycle 4 on the right hand plot only. The corresponding
correlation coefficients are shown
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to be more specific, the length of the rise phase anticorrelates with the maximal

value of R (Fig. 5), while the length of the decay phase shows weak or no such

correlation.13

Historically, the relation was first formulated by Waldmeier (1935) as an inverse

correlation between the rise time and the cycle amplitude; however, as shown by

Tritakis (1982), the total rise time is a weak (inverse logarithmic) function of the

rise rate, so this representation makes the correlation appear less robust. (Indeed,

when formulated with the rise time it is not even present in some activity indicators,

such as sunspot areas—cf. Dikpati et al. 2008; Ogurtsov and Lindholm 2011.) As

pointed out by Cameron and Schüssler (2008), the weak link between rise time and

slope is due to the fact that subsequent cycle are known to overlap by 1–2 years, so

in steeper rising cycles the minimum will occur earlier, thus partially compensating

for the shortening due to a higher rise rate. The effect is indeed more clearly seen

when the rate of the rise is used instead of the rise time (Lantos 2000; Cameron and

Schüssler 2008) or if the rise time is redefined as the time spent from 20 to 80% of

the maximal amplitude (Karak and Choudhuri 2011).

Nevertheless, when coupled with the nearly nonexistent correlation between the

decay time and the cycle amplitude, even the weaker link between the rise time and

the maximum amplitude is sufficient to forge a weak inverse correlation between

the total cycle length and the cycle amplitude (Fig. 5). This inverse relationship was

first noticed by Wolf (1861).

A stronger inverse correlation was found between the cycle amplitude and the

length of the previous cycle by Hathaway et al. (1994). This correlation is also

readily explained as a consequence of the Waldmeier effect, as demonstrated in a

simple model by Cameron and Schüssler (2007); the same probably holds for the

correlations reported by Hazra et al. (2015). Note that in a more detailed study

Solanki et al. (2002) found that the correlation coefficient of this relationship has

steadily decreased during the course of the historical sunspot number record, while

the correlation between cycle amplitude and the length of the third preceding cycle

has steadily increased. The physical significance (if any) of this latter result is

unclear.

In what follows, the relationships found by Wolf (1861), Hathaway et al. (1994),

and Solanki et al. (2002), discussed above, will be referred to as ‘‘Rmax � tcycle;n
correlations’’ with n ¼ 0;� 1 or � 3, respectively.

Modern time series analysis methods offer several ways to define an instanta-

neous frequency f in a quasiperiodic series. One simple approach was discussed in

the context of Bracewell’s transform, Eq. (3), above. Mininni et al. (2000)

discussed several more sophisticated methods to do this, concluding that Gábor’s

analytic signal approach yields the best performance. This technique was first

applied to the sunspot record by Paluš and Novotná (1999), who found a significant

long term correlation between the smoothed instantaneous frequency and amplitude

of the signal. On time scales shorter than the cycle length, however, the frequency–

amplitude correlation has not been convincingly proven, and the fact that the

13 Note that Osipova and Nagovitsyn (2017) recently constructed two separate group number series for

small and large sunspot groups and they found that the Waldmeier effect applies better to large spots.
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correlation coefficient is close to the one reported in the right hand panel of Fig. 5

indicates that all the fashionable gadgetry of nonlinear dynamics could achieve was

to recover the effect already known to Wolf. It is clear from this that the

‘‘frequency–amplitude correlation’’ is but a secondary consequence of the

Waldmeier effect.

Indeed, an anticorrelation between cycle length and amplitude is characteristic of

a class of stochastically forced nonlinear oscillators and it may also be reproduced

by introducing a stochastic forcing in dynamo models (Stix 1972; Ossendrijver et al.

1996; Charbonneau and Dikpati 2000). In some such models the characteristic

asymmetric profile of the cycle is also well reproduced (Mininni et al. 2000, 2002).

The predicted amplitude–frequency relation has the form

logRðnÞ
max ¼ C1 þ C2f ð5Þ

where f � t
ðnþ1Þ
min � t

ðnÞ
min

� ��1

is the frequency.

Nonlinear dynamo models including some form of a-quenching also have the

potential to reproduce the effects described by Wolf and Waldmeier without

recourse to stochastic driving. In a dynamo with a Kleeorin–Ruzmaikin type

feedback on a, Kitiashvili and Kosovichev (2009) are able to qualitatively

reproduce the Waldmeier effect. Assuming that the sunspot number is related to the

toroidal field strength according to the Bracewell transform, Eq. (3), they find a

strong link between rise time and amplitude, while the correlations with fall time

and cycle length are much weaker, just as the observations suggest. They also find

that the form of the growth time–amplitude relationship differs in the regular

(multiperiodic) and chaotic regimes. In the regular regime the plotted relationship

suggests

RðnÞ
max ¼ C1 � C2 tðnÞmax � t

ðnÞ
min

� �
; ð6Þ

while in the chaotic case

RðnÞ
max / 1= tðnÞmax � t

ðnÞ
min

� �h i
: ð7Þ

The linear relationship (6) was also reproduced in some stochastically forced

nonlinear dynamo models (Pipin and Sokoloff 2011; Pipin and Kosovichev 2011;

Pipin et al. 2012).

Note that based on the actual sunspot number series Waldmeier originally

proposed

logRðnÞ
max ¼ C1 � C2 tðnÞmax � t

ðnÞ
min

� �
; ð8Þ

while according to Dmitrieva et al. (2000) the relation takes the form

logRðnÞ
max / 1= tðnÞmax � t

ðnÞ
min

� �h i
: ð9Þ

At first glance, these logarithmic empirical relationships seem to be more
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compatible with the relation (5) predicted by the stochastic models. These, on the

other hand, do not actually reproduce the Waldmeier effect, just a general asym-

metric profile and an amplitude–frequency correlation. At the same time, inspection

of the the left hand panel in Fig. 5 shows that the data is actually not incompatible

with a linear or inverse rise time–amplitude relation, especially if the anomalous

Cycle 19 is ignored as an outlier. (Indeed, a logarithmic representation is found not

to improve the correlation coefficient—its only advantage is that Cycle 19 ceases to

be an outlier.) All this indicates that nonlinear dynamo models may have the

potential to provide a satisfactory quantitative explanation of the Waldmeier effect,

but more extensive comparisons will need to be done, using various models and

various representations of the relation. In one such exploratory study for instance

Nagy and Petrovay (2013) found that solar-like parameter correlations can be

obtained in a stochastically forced van der Pol oscillator but only if the perturbations

are applied to the nonlinearity parameter rather than to the damping. In another

study Karak and Choudhuri (2011) found that in a stochastically forced flux

transport dynamo perturbing the poloidal field amplitude is not sufficient to induce

solar-like parameter correlations, and perturbations to the meridional flow speed are

also needed.

1.5 Approaches to solar cycle prediction

As the SSN series is a time series it is only natural that time series analysis methods

have been widely applied in order to predict its future variations, including the

amplitude of an upcoming cycle. As a group, however, time series methods have not

been particularly successful in attaining this goal. In addition, time series analysis is

a purely mathematical tool offering little physical insight into the processes driving

cycle-to-cycle variations. In view of this, time series methods (or extrapolation

methods) have been relegated to a later section of this review, after dealing with the

currently much more lively field of the physically more insightful and more

successful alternative approaches: precursor schemes and model-based forecasts.

In the 1st edition of this review the model-based approach, then still very new,

was discussed well separated from precursor methods, in a section following the

discussion of the time series approach. In the time elapsed since the 1st edition,

however, a major surge of activity in surface flux transport (SFT) modelling, new

developments in dynamo models and in empirical precursors have made it harder to

draw a clear line between the precursor and model based approaches. Indeed, there

seem to be at least ‘‘five shades of grey’’ arching between archetypical examples of

these two categories:

(a) Internal empirical precursors (relying only on the SSN series)

(b) External empirical precursors (relying on other activity indicators)

(c) Physical[ly motivated] precursors

(d) Forecasts based on SFT models

(e) Forecasts based on dynamo models
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Accordingly, the present edition has been reorganized so the section discussing

model-based predictions immediately follows the section on precursors: the two

topics have been separated, somewhat arbitrarily, between the classes (c) and

(d) above, i.e., the term ‘‘model-based’’ is reserved for methods employing detailed

quantitative models rather than empirical or semiempirical correlations based on

qualitative physical ideas.

2 Precursor methods

Jeder Fleckenzyklus muß als ein abgeschlossenes Ganzes, als ein Phänomen

für sich, aufgefaßt werden, und es reiht sich einfach Zyklus an Zyklus.

(Gleissberg 1952)

In the most general sense, precursor methods rely on the value of some measure of

solar activity or magnetism at a specified time to predict the amplitude of the

following solar maximum. The precursor may be any proxy of solar activity or other

indicator of solar and interplanetary magnetism. Specifically, the precursor may also

be the value of the sunspot number at a given time.

In principle, precursors might also herald the activity level at other phases of the

sunspot cycle, in particular the minimum. Yet the fact that practically all the good

precursors found need to be evaluated at around the time of the minimum and refer

to the next maximum is not simply due to the obvious greater interest in predicting

maxima than predicting minima. Correlations between minimum parameters and

previous values of solar indices have been looked for, but the results were

overwhelmingly negative (e.g., Tlatov 2009). This indicates that the sunspot

number series is not homogeneous and Rudolf Wolf’s instinctive choice to start new

cycles with the minimum rather than the maximum in his numbering system is not

arbitrary—for which even more obvious evidence is provided by the butterfly

diagram. Each numbered solar cycle is a consistent unit in itself, while solar activity

seems to consist of a series of much less tightly intercorrelated individual cycles, as

suggested by Wolfgang Gleissberg in the motto of this section.

In Sect. 1.4.2 we have seen that there may be some evidence for a long-term
memory underlying solar activity. In addition to the evidence reviewed there,

systematic long-term statistical trends and periods of solar activity, such as the

secular and supersecular cycles (to be discussed in Sect. 4.2), also attest to a secular

mechanism underlying solar activity variations and ensuring some degree of long-

term coherence in activity indicators. However, as we noted, this long-term memory

is of limited importance for cycle prediction due to the large, apparently haphazard

decadal variations superimposed on it. What the precursor methods promise is just

to find a system in those haphazard decadal variations—which clearly implies a

different type of memory. As we already mentioned in Sect. 1.4.2, there is obvious

evidence for an intracycle memory operating within a single cycle, so that

forecasting of activity in an ongoing cycle is currently a much more successful

enterprise than cycle-to-cycle forecasting. As we will see, this intracycle memory is
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one candidate mechanism upon which precursor techniques may be founded, via the

Waldmeier effect.

The controversial issue is whether, in addition to the intracycle memory, there is

also an intercycle memory at work, i.e., whether behind the apparent stochasticity of

the cycle-to-cycle variations there is some predictable pattern, whether some

imprint of these variations is somehow inherited from one cycle to the next, or

individual cycles are essentially independent. The latter is known as the ‘‘outburst

hypothesis’’: consecutive cycles would then represent a series of ‘‘outbursts’’ of

activity with stochastically fluctuating amplitudes (Halm 1901; Waldmeier 1935;

Vitinsky 1973; see also de Meyer 1981 who calls this ‘‘impulse model’’). Note that

cycle-to-cycle predictions in the strict temporal sense may be possible even in the

outburst case, as solar cycles are known to overlap. Active regions belonging to the

old and new cycles may coexist for up to three years or so around sunspot minima;

and high latitude ephemeral active regions oriented according to the next cycle

appear as early as 2–3 years after the maximum (Tlatov et al. 2010—the so-called

extended solar cycle).

In any case, it is undeniable that for cycle-to-cycle predictions, which are our

main concern here, the precursor approach seems to have been the relatively most

successful, so its inherent basic assumption must contain an element of truth—

whether its predictive skill is due to a ‘‘real’’ cycle-to-cycle memory (intercycle

memory) or just to the overlap effect (intracycle memory).

The two precursor types that have received most attention are polar field

precursors and geomagnetic precursors. A link between these two categories is

forged by a third group, characterizing the interplanetary magnetic field strength or

‘‘open flux’’. In terms of the classification outlined in Sect. 1.5 above, all these

belong to the category (c) of physically motivated precursors. But before

considering these approaches, we start by discussing categories (a) and (b): the

empirical precursors based on the chance discovery of correlations between certain

solar parameters and cycle amplitudes. These parameters involved may also be

external to the SSN series (b); but first of all we will focus on the most obvious

precursor type: internal empirical precursors (a) —the level of solar activity at

some epoch before the next maximum.

2.1 Cycle parameters as precursors and the Waldmeier effect

The simplest weather forecast method is saying that ‘‘tomorrow the weather will be

just like today’’ (works in about 2/3 of the cases). Similarly, a simple approach of

sunspot cycle prediction is correlating the amplitudes of consecutive cycles. There

is indeed a marginal correlation, but the correlation coefficient is quite low (0.35).

The existence of the correlation is related to secular variations in solar activity,

while its weakness is due to the significant cycle-to-cycle variations.

A significantly better correlation exists between the minimum activity level and

the amplitude of the next maximum (Fig. 6). The relation is linear (Brown 1976),

with a correlation coefficient of 0.68 (if the anomalous cycle 19 is ignored—Brajša

et al. 2009; see also Pishkalo 2008). The best fit is
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Rmax ¼ 114:3þ 6:1Rmin: ð10Þ

Cameron and Schüssler (2007) pointed out that the activity level three years

before the minimum is an even better predictor of the next maximum. The exact

value of the time shift producing optimal results may somewhat vary depending on

the base period considered: in the Version 2 SSN series for the whole series of

cycles 1–24 the highest correlation results for a time shift of 39 months while

considering only cycles 8–24, for which data are sometimes considered more

reliable, the best correlation is found at 32 months. Here in the right hand panel of

Fig. 6 we simply use the round value of of 3 years (36 months) as originally

proposed. The linear regression is

Rmax ¼ 79þ 1:52Rðtmin � 3 yearsÞ: ð11Þ

This method, to be referred to as as ‘‘minimax3’’ for brevity, can only provide an

upper estimate for the expected amplitude of Cycle 25 as the minimum has not been

reached at the time of writing. As the minimum will take place no earlier than May

2019, the value of the predictor is not higher than 44.8, which would result in a

cycle amplitude of 147. This already gives an indication that the upcoming cycle

will be weaker than the climatological average.

As the epoch of the minimum of R cannot be known with certainty until about a

year after the minimum, the practical use of these methods is rather limited: a

prediction will only become available 2–3 years before the maximum, and even then

with the rather low reliability reflected in the correlation coefficients quoted above.

In addition, as convincingly demonstrated by Cameron and Schüssler (2007) in a

Monte Carlo simulation, these methods do not constitute real cycle-to-cycle

prediction in the physical sense: instead, they are due to a combination of the

overlap of solar cycles with the Waldmeier effect. As stronger cycles are

characterized by a steeper rise phase, the minimum before such cycles will take

place earlier, when the activity from the previous cycle has not yet reached very low

levels.

The same overlap readily explains the Rmax � tcycle;n correlations discussed in

Sect. 1.4.3. These relationships may also be used for solar cycle prediction purposes

(e.g., Kane 2008) but they lack robustness. The forecast is not only sensitive to the

value of n used but also to the data set (relative or group sunspot numbers) (Vaquero

and Trigo 2008). Similar correlations between the properties of subsequent cycles

were used by Li et al. (2015) to give a prediction for Cycle 25.

2.2 External empirical precursors

Cycle 24 peaked at an amplitude 35% lower than Cycle 23. This was the 4th largest

intercycle drop in solar activity in the monthly SSN record. The last such occurrence

was rather different, following the single anomalously strong cycle 19, while in the

case of the drop after Cycle 23 a series of 7 strong cycles was ended. This is

illustrated in Fig. 4 where the shaded area marks a �2r band around the mean
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amplitude of cycles 17–23 comprising the Modern Maximum. Cycle 24 clearly

deviates downwards from the Modern Maximum cycles by over 2r on the low side.

The first two occurrences of similar intercycle drops in activity (following cycles

4 and 11) are closer analogues of the recent events. These heralded the two previous

Gleissberg minima centuries ago. The circumstance that a new Gleissberg minimum

was already overdue suggests that this is indeed what we are witnessing. This is in

line with current indications that solar activity will remain at Cycle 24 levels also in

Fig. 8 Portents of changes to come 2: flare statistics. Occurrence rate of X and M class flares during the
last three solar cycles. In terms of flare statistics, the Modern Maximum seems to have ended before
Cycle 23 already. (Figure courtesy of A. Özgüç)

Fig. 7 Portents of changes to come 1: solar oscillations. Averaged frequency shifts (symbols with error
bars) in the indicated frequency bands as a function of time. Renormalized data on the 10.7-cm radio flux
(RF), Ca K index, Kitt Peak global magnetic field strength index (BKP) and SSN v1 are plotted for
comparison as shown in the legend. Vertical dotted lines mark cycle minima. Image reproduced with
permission from Howe et al. (2017), copyright by the authors
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Cycle 25 (cf. Sect. 5). Yet no work predating 2005 predicted this drop which mostly

caught solar physicists by surprise.

This unexpected drop in the level of solar activity from Cycle 23 to 24 has

spurred efforts to find previously overlooked earlier signs of the coming change in

solar data. A number of such ‘‘portents’’ were indeed identified, as first reviewed

and correlated by Balogh et al. (2014).

A ‘‘seismic portent’’ was identified by Basu et al. (2012). High-frequency solar

oscillations, sampling the top of the solar convective zone, have long been known to

display frequency variations correlated with the solar cycle. The analysis of Basu

et al. (2012) showed that for [relatively] lower frequencies the amplitude of the

frequency variation was strongly suppressed in Cycle 23, compared with Cycle 22

or with the variation in higher frequency modes (Fig. 7). This suggests that the

(presumably magnetically modulated) variations in the sound speed were limited to

the upper 3 Mm of the convective zone in Cycle 23, whereas in the previous cycle

they extended to deeper layers. Revisiting the issue, Howe et al. (2017) confirmed a

change in the frequency response to activity during Solar Cycle 23, with a lower

correlation of the low-frequency shifts with activity in the last two cycles compared

to Cycle 22.

A similar disproportionately strong suppression of Cycle 23 relative to Cycle 22

is seen in the occurrence rate of flares, especially of class X and M (Fig. 8), and also

in the variation of the Ha flare index. The suppression is rarely commented on yet

clearly seen in the plots of Ataç and Özgüç (2001), Ataç and Özgüç (2006), Hudson

et al. (2014), or Gao and Zhong (2016).14 It may be worth noting that the

relationship between the SSN and the soft X-ray background was also found to

differ for different solar cycles by Winter et al. (2016).

This ‘‘eruptivity portent’’ is also manifested in the variation of the coronal index

(green coronal line emissivity), as seen in the plots of Ataç and Özgüç (2006). A

curious disagreement is seen regarding the suppression of the number of C class

flares in Cycle 23: while the data of Hudson et al. (2014) suggest a significant

suppression of the number of these flares, only slightly less than for M and X class

flares, Gao and Zhong (2016) found a much less strong suppression for C flares

compared to M and X type flares. This is puzzling as both works are based on the

same NOAA data, the only apparent difference being the exclusion of flares close to

the limb by Hudson et al. (2014).

The stronger suppression of larger flares might be interpereted as a relative lack

of large active regions harbouring sufficient magnetic energy to produce such flares.

Based on the expectation that the magnetic ‘‘roots’’ of larger ARs reach deeper, this

would also agree with the seismic portent. Indeed, Howe et al. (2017) explicitly

speculate that the observed suppression of the low frequency modulation in

Cycle 23 is ‘‘perhaps because a greater proportion of activity is composed of weaker

or more ephemeral regions’’.

14 Hudson et al. (2014) also called attention to the unusal temporal distribution of active region flare

productivity during Cycle 23: in the first half of the cycle the number of flares produced by a flaring AR

remained at an all-time low, then from the 2003 Halloween events it suddenly rose.
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Apparently in line with the above reasoning, de Toma et al. (2013b) reported a

strong suppression of the number of very large ([ 700 msh) sunspots and sunspot

groups in Cycle 23. But the situation is not so simple as Kilcik et al. (2011), Lefèvre

and Clette (2011) and Kilcik et al. (2014) found an apparently opposite trend: a

strong suppression in the number of very small (\ 17 msh) spots or of sunspot

groups of Zürich type A and B (pores/pore pairs) while the number of larger, more

complex spots/groups is largely unaffected, or even slightly enhanced (Fig. 9). As

the contribution to plage areas, radio flux, TSI or disk-integrated magnetic flux

density is dominated by these large ARs, no significant suppression of Cycle 23 is

detected in these proxies either (Göker et al. 2017).

These perplexing findings may also be linked to the apparent decrease of the

sunspot magnetic field strengths throughout Cycle 23 (Livingston et al. 2012;

Nagovitsyn et al. 2016). There is, however, as yet no consensus regarding the reality

of this trend (de Toma et al. 2013a; Watson et al. 2014) or regarding to what extent

they are cycle related or due to secular trends (Norton et al. 2013; Rezaei et al.

2012, 2015; Nagovitsyn et al. 2017).

Studies pointing to possible interrelationships between the various portents

discussed above include Kilcik et al. (2018) where a stronger decrease in sunspot

count in flaring AR was reported compared to non-flaring regions. While local

subsurface flow properties in AR, in particular vorticity, have also been found to

correlate with flare productivity (Mason et al. 2006; Komm et al. 2011, 2015), the

apparently only study of the relationship between local disturbances of seismic

properties (such as sound speed) in AR and flare index led to inconclusive results

(Lin 2014).

Fig. 9 Portents of changes to come 3: sunspot size statistics. Variation of sunspot counts (SSC, thick
solid) and group counts (SG, dotted) for small (Zürich types A and B, left) and large (types D to F, right)
sunspot groups. SSN v1 is shown in grey for comparison. (Figure courtesy of A. Kilcik)
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2.3 Polar precursor

The polar precursor method, as first suggested by Schatten et al. (1978), is based on

the correlation between the amplitude of a sunspot maximum with a measure of the

amplitude of the magnetic field near the Sun’s poles at the preceding cycle

minimum. Its physical background is the plausible causal relationship between the

toroidal flux and the poloidal flux that serves as a seed for the generation of toroidal

fields by the winding up of field lines in a differentially rotating convective zone.

It is now widely agreed that, beside internal empirical precursor methods based

on the Waldmeier rule, the polar precursor method is currently the most reliable way

to forecast an upcoming solar cycle. As the first revision of this review concluded,

the polar precursor method ‘‘has consistently proven its skill in all cycles.’’ It is now

also widely agreed that the polar precursor stands behind the apparent predicting

skill of several other forecasting methods, including geomagnetic precursors.

2.3.1 Polar magnetic field data

Observational data on magnetic fields near the Sun’s poles were reviewed by Petrie

(2015). Solar magnetograms have been available on a regular basis from Mt. Wilson

Observatory since 1974, from Wilcox Solar Observatory (WSO) since 1976, and

from Kitt Peak since 1976 (with a major change in the instrument from KPVT to

SOLIS in 2003). The most widely used set of direct measurements of the magnetic

field in the polar areas of the Sun is from the WSO series (Svalgaard et al. 1978;

Hoeksema 1995). While these magnetograms have the lowest resolution of the three

sets, from the point of view of the characterization of the polar fields this is not

necessarily a disadvantage, as integrating over a larger aperture suppresses random

Fig. 10 The hemispherically averaged polar field amplitude from the WSO data set (black) and the
overall dipole amplitude (cyan) as a function of time. The sunspot number series (green dotted) is shown
for comparison, with an arbitrary rescaling. All curves were smoothed with a 13-month sliding window.
Times of sunspot minima are marked by the dashed vertical lines. Global dipole amplitudes were
obtained by courtesy of Jie Jiang and represent the average of values computed for all available data sets
out of a maximum of five (WSO, NSO, MWO, MDI, HMI) at the given time
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fluctuations and improves the S/N ratio. As a result of the low resolution, the WSO

polar field value is a weighted average of the line-of-sight field in a polar cap

extending down to � 55� latitude on average (with significant annual variations due
to the 7� tilt of the solar axis).

The classic reference on the processing and analysis of WSO polar field data is

Svalgaard et al. (1978). The inference from their analysis was that assuming a form

B ¼ B0f ðhÞ with f ðhÞ ¼ cosnðhÞ for the actual mean magnetic field profile (h is

colatitude) inside the polar cap around minimum, n ¼ 8� 1 while B0 was around

10 G for Cycle 21 and the next two cycles, being reduced to about half that value in

Cycle 24. While one later study (Petrie and Patrikeeva 2009) points to a possibility

that the value of n may be even higher, up to 10, the ‘‘canonical’’ value n ¼ 8 seems

quite satisfactory in most cases (e.g., Fig. 2 in Whitbread et al. 2017).

Figure 10 shows the variation of the smoothed amplitude of the WSO polar field,

averaged over the two poles. (The presence of undamped residual fluctuations on

short time scales illustrates the unsatisfactory nature of the 13-month smoothing,

applied here for consistency with the rest of this review. A regularly updated plot of

the WSO polar field with a more optimal smoothing (low-pass filter) is available

from the WSO web site15.)

Also shown is an alternative measure of the amplitude of the poloidal field

component, the axial dipole coefficient, i.e., the amplitude of the coefficient of the

Y0
1 term in a spherical harmonic expansion of the distribution of the radial magnetic

field strength over the solar disk:

DðtÞ ¼ 3

2

Z p

0

Bðh; tÞ cos h sin h dh: ð12Þ

where B denotes the azimuthally averaged radial magnetic field.

This formula assumes the use of the Schmidt quasi-normalization in the

definition of the spherical harmonics, widely used in solar physics and geomag-

netism (see, e.g., Winch et al. 2005). For direct comparison of the amplitudes of

harmonics of different degree, a full normalization is sometimes preferred (e.g., in

DeRosa et al. 2012): this results in a normalized dipole coefficient D̂ ¼ ð4p=3Þ1=2D.

While (12) or even (13) are often loosely referred to as the ‘‘solar dipole moment’’,

it should also be kept in mind that the magnetic [dipole] moment, as normally

defined in physics, is related to D as ð2pR3
�=l0ÞD where R� is the solar radius and

l0 is the vacuum permeability.

The two curves in Fig. 10 are quite similar even in many of their details: the

polar field amplitude follows the variations of the dipole coefficient with a phase lag

of about a year. This is hardly surprising as the hemispherically averaged polar field

amplitude jBN � BSj=2 is clearly proportional to the contribution to D coming from

the polar caps:

15 http://wso.stanford.edu/gifs/Polar.gif.
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DNSðtÞ ¼
3

2

Z hc

0

BðhÞ cos h sin h dhþ 3

2

Z p

p�hc

BðhÞ cos h sin h dh

¼ 3

2
B0;N � B0;S

� � Z hc

0

f ðhÞ cos h sin h dh:
ð13Þ

As the polar field is formed by the poleward transport of magnetic fields at lower

latitudes, it is only to be expected that the variation of the polar cap contribution will

follow that of the overall dipole with some time delay.

Indeed, based on the good agreement of the two curves in Fig. 10, ðBN � BSÞ=2
may simply be used as a simple measure of the amplitude of the dipole (on an

arbitrary scale); on similar grounds, ðBN þ BSÞ=2 may be considered a measure of

the quadrupole component (e.g., Svalgaard et al. 2005; Muñoz-Jaramillo et al.

2013a).

We note that the dipole moment in our figure is an average of all available values

from different magnetogram data sets for a given date; however, there is a quite

good overall agreement among the values from different data sets (see Fig. 9 in

Jiang et al. 2018).16

The behaviour of the curves in Fig. 10 further shows that the times of dipole

reversal are usually rather sharply defined. Based on the 4 reversals seen in the plot,

the overall dipole is found to reverse 3:44� 0:18 years after the minimum, while

the polar contribution to the dipole reverses after 4:33� 0:36 years. (The formal

errors given are 1r.) The low scatter in these values suggests that the cycle phase of

dipole reversal may be a sensitive test of SFT and dynamo models.

In contrast to reversal times, maxima of the dipole amplitude are much less well

defined (occurring 7:27� 1:38 and 8:33� 1:08 years after minimum for the two

curves). The curves display broad, slightly slanting plateaus covering 3 to 5 years

Table 1 Predictors based on magnetic field measurements and their forecasts

Cycle Amplitude

(SSN v2)

Previous WSO

field maximum

WSO field at

minimum

Previous

D maximum

Dipole coef.

D at minimum

21 232.9 (1.07) 1.05 4.19 4.10

22 212.5 1.31 1.28 4.23 3.98

23 180.3 1.13 1.00 3.96 3.01

24 116.4 0.63 0.52 1.95 1.33

25 [ 0.72 \ 0.72 [ 1.93 \ 1.93

Fit coef. 177.4 188.8 51.3 57.5

Scatter 25.9 24.8 16.8 21.9

Cycle 25

forecast

[ 102 \ 161 [ 82 \ 133

Forecast limits have been calculated adding/subtracting the scatter (as calculated nominally from the 4

data points) to/from the value given by the fit

16 With the exception of NSO data (not shown in that plot), which in Cycle 21 significantly deviate from

the others.
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(Iijima et al. 2017); the dipole amplitude at the time of solar minimum is still

typically 84� 12% (global dipole) and 90� 6% (polar fields) of its maximal value,

reached years earlier. This kind of slanting profile is actually good news for cycle

prediction as it opens the way to guess the dipole amplitude at the time of minimum,

used as a predictor, years ahead. For example, using the rather flat and low

preceding maximum in polar field strength, Svalgaard et al. (2005) were able to

predict a relatively weak Cycle 24 (predicted Version 1 peak SSN value 75� 8 vs.

67 observed) as early as 4 years before the sunspot minimum took place in

December 2008!

The potential use of the dipole amplitude as a precursor is borne out by the

comparison with the sunspot number curve in Fig. 10. After our arbitrary rescaling

of the SSN, its maxima in each cycle are roughly at level with the preceding

plateaus of the solid curves. This certainly seems to indicate that the suggested

physical link between the precursor and the cycle amplitude is real.

The flatness of the maxima of the polar field imply that the precursor normally

cannot be strongly affected by the exact time when it is evaluated. The cycle overlap

effect combined with the Waldmeier relation, affecting the timing of the minimum,

is therefore unlikely to explain the predictive skill of the polar precursor: we are

here dealing with a real physical precursor (as also argued by Charbonneau and

Barlet 2011).

The ‘‘polar precursor’’ may thus be interpreted in four different ways. The

precursor may be the value of the global dipole moment or of the contribution of

polar fields to this dipole moment only (i.e., the WSO field); and either of these may

be evaluated at cycle minimum, or a few years earlier when they reach their

respective maxima. Table 1 lists these precursor values for individual solar cycles,

compared with the actual cycle amplitude. A homogeneous linear fit with one free

parameter to the precursor–cycle amplitude relation yields the fit coefficient values

given in the lower part of the table. The nominal random scatter is also indicated.

Precursor values for Cycle 25 have been evaluated in late 2018; as it is not yet clear

whether the maximum of the dipole moment has passed or when the minimum will

take place, the forecasts based on these values are to be interpreted as lower/upper

estimates, respectively. Taking into account the given values of the scatter, a

combination of these results implies that Cycle 25 should peak in the range 102–133

with a nominal probability of � 70%, i.e. the next cycle should have an amplitude

similar to Cycle 24.

2.3.2 Proxy reconstructions of the polar magnetic field

Despite the plausibility of a physical link between polar magnetic fields and cycle

amplitude, the shortness of the available direct measurement series represents a

difficulty when it comes to finding a convincing statistical link between these

quantities. A way to circumvent this difficulty is offered by the availability of proxy

data for polar magnetism spanning much longer time scales. Indeed, Schatten’s

original suggestion of a polar field precursor (Schatten et al. 1978) on a generic

physical basis was supported by such proxy studies. It is remarkable that despite the

very limited available experience, proxy-based forecasts using the polar field
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method proved to be consistently in the right range for Cycles 21, 22, and 23

(Schatten and Sofia 1987; Schatten et al. 1996).

The types of proxies of solar polar magnetism were reviewed by Petrie et al.

(2014). In the present subsection we focus on polar faculae, which are currently

considered the best photospheric proxy data for the reconstruction of polar magnetic

field/flux. The interplanetary and geomagnetic precursors discussed in the following

sections, however, may also be interpreted as indirect proxies of the solar polar

magnetic field.

High resolution observations by the Hinode space observatory confirm that, like

all other magnetic fields in the solar photosphere, polar fields are highly

intermittent, nearly all of the flux being concentrated in isolated strong magnetic

field concentrations (Tsuneta et al. 2008). These magnetic elements are observed as

bright facular points in white light and in some spectral lines. The number density of

these polar faculae is then related to the intensity of the polar magnetic field, while

their total number above a certain latitude is related to the total magnetic flux

(Sheeley 1964). This conclusion was indeed confirmed by Li et al. (2002) and, more

recently, by Tlatov (2009).

Perhaps the most carefully analyzed polar facular data set is the series of

observations in the Mt. Wilson Observatory. These data were validated against MDI

observations and then calibrated to WSO and MDI magnetic measurements by

Muñoz-Jaramillo et al. (2012). This resulted in a time series of the solar polar

magnetic flux (poleward of 70� latitude) for each hemisphere, covering the period

1906–2014. Owing to the varying tilt of the solar axis, the data are available with an

annual cadence and with a time shift of 0.5 year between the hemispheres. This

reconstructed polar flux was subsequently correlated with cycle amplitudes,

Fig. 11 Temporal variation of hemispherically averaged polar magnetic fluxes resulting from the
Mt.Wilson polar facular counts (black), WSO polar flux (magenta), rescaled Mitaka polar facular counts
(red), and rescaled Kodaikanal polar network index (yellow). The sunspot number series (green dotted) is
shown for comparison, with an arbitrary rescaling. Flux values are based on the calibration in Muñoz-
Jaramillo et al. (2012). All data refer to the area poleward of 70� latitude. All curves were smoothed with
a 13-month sliding window except the annually sampled Mt.Wilson and Kodaikanal data where a 121
filter was applied. Times of sunspot minima are marked by the dashed vertical lines
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confirming the usefulness of the polar precursor method (Muñoz-Jaramillo et al.

2013a, b). Hemispherically averaged data show a highly significant correlation,

albeit with a large scatter (r ¼ 0:69 at 96%). This imperfect correlation is reflected

in Fig. 11 in the wildly varying ratio between the maxima of the black curve and the

subsequent maxima of the green dotted curve.

The poor correlation can be improved by separating the hemispheres, but some

outlier points appear, apparently obeying an alternative relationship. Arguing that

outliers correspond to cycles where the hemispheric asymmetry of polar fields

exceeds a threshold, Muñoz-Jaramillo et al. (2013a) finally arrived at four (two for

each hemisphere) linear empirical relationships between the reconstructed polar

magnetic flux at minimum and the amplitude of the next cycle. The suggested

relation correctly reproduced the observed amplitude of Cycle 24 (predicted

Version 1 SSN 77� 16 vs. 67 observed).

Another relevant data set is the polar facular counts recorded in the National

Astronomical Observatory of Japan (NAOJ) at Mitaka Observatory during the

period 1954–1996 (Li et al. 2002). A third series of polar facular data, originating

from Kodaikanal Observatory Ca K spectroheliograms, was compiled by Priyal

et al. (2014). (As these are chromospheric features, the authors prefer to call their

index a polar network index.) Major disagreements between these data sets are seen

in Fig. 11 indicating that the use of polar facular proxies is still not on very firm

grounds. This is further shown by a comparison of the deducted MWO polar flux

with polar magnetic fluxes computed from WSO polar field data using the

calibration formula derived in Muñoz-Jaramillo et al. (2012) (magenta curve in the

plot). It is apparent that prior to the calibration period 1996–2006 the reconstructed

MWO polar fluxes are systematically higher than the measured WSO fluxes,

suggesting problems with these calibrations. In particular, while WSO polar field

strengths peak at roughly the same amplitude in cycles 21, 22 and 23, in agreement

with the comparable amplitudes of the subsequent sunspot cycles, the different polar

facular counts indicate greatly different amplitudes for these minima, and they are

also mutually incompatible.

Polar faculae are not the only long-term data base relevant for the study of high-

latitude magnetic fields. Ha synoptic charts are available from various observatories

from as early as 1870. As Ha filaments and filament channels lie on the magnetic

neutral lines, these maps can be used to reconstruct the overall topology, if not the

detailed map, of the large-scale solar magnetic field. While in between the neutral

lines only the polarity of the field can be considered known, the variation of the

global dipole moment may be tolerably well estimated even by fixing the field

amplitude at a constant value. As higher order multipoles decay rapidly with

distance, a potential field model fitted to the given synoptic map will then yield an

acceptable representation of the polar field at the source surface. With this approach

Makarov et al. (2001) computed the multipole coefficients of the solar magnetic

field, reconstructing the polar field strength at the source surface back to 1915. They

also introduced the so-called dipole-octupole index (aka A-index): the sum of the

axial dipole and octupole magnetic moments as a simple measure of the polar field

amplitude. The method was later applied by Obridko and Shelting (2008) to predict

the amplitude of Cycle 24: their forecast proved to be within 10% of the actual
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value. In turn, Tlatov (2009) has shown that several indices of the polar magnetic

field during the activity minimum, determined from these charts, correlate well with

the amplitude of the incipient cycle.

2.3.3 Extending the range of the polar precursor: early forecasts for Cycle 25

The polar precursor is customarily evaluated at the cycle minimum, offering a

prediction over a time span of 3–4 years, comparable to the rise time of the next

cycle. Table 1, however, shows that using the maximal value of the global dipole

moment results in a somewhat lower scatter around the mean relationship. This

opens the possibility of making a prediction several years before the minimum.

The forecasting potential of the global dipole may also provide the ground for the

findings of Hawkes and Berger (2018) who proposed the ‘‘helicity flux’’ as a cycle

precursor. Perhaps more aptly called helicity input rate by the differential rotation,

their helicity flux is defined by a weighted hemispheric surface integral of (a

functional of) the radial magnetic field, where the weight function is fixed by the

differential rotation profile. In such an integral, which is not unlike Eq. (12), the

dipole component will naturally give a dominant contribution as the higher order

terms change sign over each hemisphere, which largely cancels their effect. The

authors found that the helicity input rate anticipates the sunspot numbers with a time

shift of 4.5–6.9 years (depending on the cycle considered). This seems to be in line

with the variable time delays between maxima of the global dipole moment and the

next cycle maximum (Fig. 10). Their prediction for the amplitude of Cycle 25 is

117—similar or slightly stronger than Cycle 24.

Similarly, using the brightness temperature of the 17 GHz microwave emission

as a proxy for the field strength, Gopalswamy et al. (2018) found that the correlation

between this proxy and the sunspot number is maximal for time shifts of � 4–6

years (depending on cycle and hemisphere). Their forecast for Cycle 25 is a

smoothed SSN of 89 for the S hemisphere and 59 for the N hemisphere (the latter

being a lower bound as the proxy had not reached its maximum at the time of

publication). These values are again comparable to or slightly higher than the

amplitudes for Cycle 24.

In this context it is interesting to note that Makarov et al. (1989) and Makarov

and Makarova (1996) found that the number of polar faculae observed at

Kislovodsk anticipates the next sunspot cycle with a time lag of 5–6 years on

average in cycles 20–22; even short term annual variations or ‘‘surges’’ of sunspot

activity were claimed to be discernible in the polar facular record. An apparently

conflicting result was obtained by Li et al. (2002), who found using the Mitaka data

base that the best autocorrelation results with a time shift of about 4 years only. The

discrepancy may perhaps be related to the cycle dependence of these time shifts, as

partly different periods were considered.

In theory it is conceivable that successful forecasts might be attempted even

earlier. After all, the polar field starts to build up at the time of polar reversal, about

5–6 years before the next minimum. Petrovay et al. (2018) explored this possibility

in a study of the coronal green lime emission at high latitudes. They tried to

correlate various features of the characteristic ‘‘rush to the poles’’ (RTTP) feature of
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this emission around the polar reversal with properties of the following sunspot

cycle and found a significant correlation between the speed of the RTTP and the

time from the reversal to the next maximum. From this they predict that Cycle 25

will most likely peak in late 2024. Combining this date with the minimax3 method

discussed in Sect. 2.1 above, the cycle is amplitude is estimated as 130, and the

minimum is expected for 2019.

It is worth noting here that, in addition to the start of the increase of the polar

field 5–6 years before the minimum, early precursors at high latitudes may be

expected also on completely different grounds. The concept of the extended solar
cycle implies that small ephemeral bipoles belonging to an upcoming solar cycle

appear at high latitudes and start to migrate equatorward years before the first spots

of the new cycle are observed. Thus, early signs of the equatorward propagating

toroidal flux ring at high latitudes may give hints on the amplitude of an upcoming

cycle (cf. also Badalyan et al. 2001). (From a formal point of view this would be

then an internal cycle precursor, related to the one based on the Waldmeier rule.)

It is not impossible that some of the very early precursors suggested above, if

real, may be partly explained by this effect. For example, Makarov and Makarova

(1996) considered all faculae poleward of 50� latitude. Bona fide polar faculae, seen

on Hinode images to be knots of the unipolar field around the poles, are limited to

higher latitudes, so the wider sample may consist of a mix of such ‘‘real’’ polar

faculae and small bipolar ephemeral active regions. These latter are known to obey

an extended butterfly diagram, as confirmed by Tlatov et al. (2010): the first bipoles

of the new cycle appear at higher latitudes about 4 years after the activity

maximum.

In interpreting high-latitude migration patterns it should, however, be taken into

account that it is not yet clear how far the wings of the butterfly diagram can

actually extended backwards, i.e., to what extent a high latitude equatorward

propagating branch is contiguous with the low latitude branch or is an unrelated

phomenon (cf. the discussion in Cliver 2014 and Petrie et al. 2014).

The high-latitude torsional oscillation pattern is usually considered the most

pregnant manifestation of the extended solar cycle. This pattern has been unusually

week during Solar Cycle 24, apparently suggesting significant further weakening of

solar activity (Howe et al. 2013). However, later observations (Howe et al. 2018;

Komm et al. 2018) indicate that the low-latitude equatorward branch of the

torsional oscillation is actually stronger in Cycle 24 than it was in Cycle 23, if

measured against the same background flow.

In order to obtain a precursor that varies smoothly enough to be useful also

between successive minima, Schatten and Pesnell (1993) introduced a new activity

index, the ‘‘Solar Dynamo Amplitude’’ (SoDA) index, combining the polar field

strength with a traditional activity indicator (the 10.7 cm radio flux F10.7). Around
minimum, SoDA is basically proportional to the polar precursor and its value yields

the prediction for F10.7 at the next maximum; however, it was constructed so that

its 11-year modulation is minimized, so theoretically it should be rather stable,

making predictions possible well before the minimum. It remains to be seen whether

SoDA actually improves the predictive skill of the polar precursor, to which it is

more or less equivalent in those late phases of the solar cycle when forecasts start to
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become reliable. Using the SoDA index Pesnell and Schatten (2018) predicted

Cycle 25 to peak at R ¼ 134� 25 in 2025.

2.4 Geomagnetic and interplanetary precursors

Relations between the cycle related variations of geomagnetic indices and solar

activity were noted long ago. It is, however, important to realize that the overall

correlation between geomagnetic indices and solar activity, even after 13-month

smoothing, is generally far from perfect. This is due to the fact that the Sun can

generate geomagnetic disturbances in two ways:

(a) By material ejections (such as CMEs or flare particles) hitting the terrestrial

magnetosphere. This effect is obviously well correlated with solar activity,

with no time delay, so this contribution to geomagnetic disturbances peaks

near, or a few years after, sunspot maximum. (Note that the occurrence of the

largest flares and CMEs is known to peak some years after the sunspot

maximum—see Fig. 16 in Hathaway 2015.)

(b) By a variation of the strength of the general interplanetary magnetic field and

of solar wind speed. Geomagnetic disturbances may be triggered by the

alternation of the Earth’s crossing of interplanetary sector boundaries (slow

solar wind regime) and its crossing of high speed solar wind streams while

well within a sector. The amplitude of such disturbances will clearly be higher

for stronger magnetic fields. The overall strength of the interplanetary

magnetic field, in turn, depends mainly on the total flux present in coronal

holes, as calculated from potential field source surface models of the coronal

magnetic field. At times of low solar activity the dominant contribution to this

flux comes from the two extended polar coronal holes, hence, in a simplistic

formulation this interplanetary contribution may be considered linked to the

Fig. 12 Illustration of Ohl’s method in cycles 20–23. Shown is the variation of the daily geomagnetic aa
index (solid black) and the monthly SSN (dotted green), both smoothed with a 13-month sliding window.
Horizontal blue lines mark the value of the predictor in each cycle. Times of sunspot minima are marked
by the dashed vertical lines
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polar magnetic fields of the Sun, which in turn is a plausible precursor

candidate as we have seen in the previous subsection. As the polar field

reverses shortly after sunspot maximum, this second contribution often

introduces a characteristic secondary minimum in the cycle variation of

geomagnetic indices (cf. Fig. 12, somewhere around the maximum of the

curve.

The component (a) of the geomagnetic variations actually follows sunspot

activity with a variable time delay. Thus a geomagnetic precursor based on features

of the cycle dominated by this component has relatively little practical utility. This

would seem to be the case, e.g., with the forecast method first proposed by Ohl

(1966), who noticed that the minimum amplitudes of the smoothed geomagnetic aa
index are correlated to the amplitude of the next sunspot cycle (see also Du et al.

2009, Du 2012). This is clearly just a secondary consequence of the previously

discussed correlations between solar indices at cycle minimum (occurring

somewhat earlier than the minimum in aa, see Fig. 12) and the amplitude of the

next maximum. While the polar precursor is more directly relevant and is available

sooner, the amplitude of the aa index at minimum is still useful as a proxy as these

data have been available since 1868.

An indication that the total geomagnetic activity, resulting from both mecha-

nisms does contain useful information on the expected amplitude of the next solar

cycle was given by Thompson (1993), who found that the total number of disturbed

days in the geomagnetic field in cycle n is related to the sum of the amplitudes of

cycles n and n þ 1 (see also Dabas et al. 2008).

A method for separating component (b) was proposed by Feynman (1982) who

correlated the annual aa index with the annual mean sunspot number and found a

linear relationship between R and the minimal value of aa for years with such R
values. She interpreted this linear relationship as representing the component (a)

discussed above, while the amount by which aa in a given year actually exceeds the

value predicted by the linear relation would be the contribution of type (b) (the

‘‘interplanetary component’’). The interplanetary component usually peaks well

ahead of the sunspot minimum and the amplitude of the peak seemed to be a good

predictor of the next sunspot maximum. However, it is to be noted that the

assumption that the ‘‘surplus’’ contribution to aa originates from the interplanetary

component only is likely to be erroneous, especially for stronger cycles. It is known

that the number of large solar eruptions shows no unique relation to R: in particular,

for R [ 100 their frequency may vary by a factor of 3 (see Fig. 18 in Hathaway

2015), so in some years they may well yield a contribution to aa that greatly exceeds

the minimum contribution. A case in point was the ‘‘Halloween events’’ of 2003,

that very likely resulted in a large false contribution to the derived ‘‘interplanetary’’

aa index (Hathaway 2010). As a result, the geomagnetic precursor method based on

the separation of the interplanetary component predicted an unusually strong

Cycle 24 (Rm � 150), in contrast to most other methods, including Ohl’s method and

the polar field precursor, which suggested a weaker than average cycle

(Rm � 80�90).
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An alternative method for the separation of the interplanetary component, based

on the use of the use of the F10:7 index to model the variation of the activity-related

component, was proposed by Pesnell (2014).

In addition to the problem of neatly separating the interplanetary contribution to

geomagnetic disturbances, it is also wrong to assume that this interplanetary

contribution is dominated by the effect of polar magnetic fields at all times during

the cycle. Indeed, Wang and Sheeley (2009) pointed out that the interplanetary

magnetic field amplitude at the Ecliptic is related to the equatorial dipole moment of

the Sun that does not survive into the next cycle, so despite its more limited

practical use, Ohl’s original method, based on the minima of the aa index is

physically better founded, as the polar dipole dominates around the minimum. (Cf.

also Ng 2016.) The total amount of open interplanetary flux, more closely linked to

polar fields, could still be determined from geomagnetic activity if the interplanetary

contribution to it is further split into:

(b1) A contribution due to the varying solar wind speed (or to the interplanetary

magnetic field strength anticorrelated with it), which in turn reflects the

strength of the equatorial dipole.

(b2) Another contribution due to the overall interplanetary field strength or open

magnetic flux, which ultimately reflects the axial dipole.

Clearly, if the solar wind speed contribution (b1) could also be subtracted, a

physically better founded prediction method should result. While in situ spacecraft

measurements for the solar wind speed and the interplanetary magnetic field

strength do not have the necessary time coverage, Svalgaard and Cliver

(2005, 2007) and Rouillard et al. (2007) devised a method to reconstruct the

variations of both variables from geomagnetic measurements alone. Building on

their results, Wang and Sheeley (2009) arrived at a prediction for the maximum

amplitude of solar Cycle 24 which agreed well with that of Bhatt et al. (2009), who

applied a modified form of Ohl’s method. Both forecasts proved to be somewhat too

high (by � 20–25%, a little over 1r).
The open magnetic flux can also be derived from the extrapolation of solar

magnetograms using a potential field source surface model. The magnetograms

applied for this purpose may be actual observations or the output from surface flux

transport models, using the sunspot distribution (butterfly diagram) and the

meridional flow as input. Such models indicate that the observed latitude

independence of the interplanetary field strength (‘‘split monopole’’ structure) is

only reproduced if the source surface is far enough ([ 10R�) and the potential field
model is modified to take into account the heliospheric current sheet (current sheet

source surface model, Schüssler and Baumann 2006; Jiang et al. 2010a). The

extrapolations are generally found to agree well with in situ measurements where

these are available. A comprehensive review of this topic is given in Lockwood

(2013).
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2.5 The quest for a precursor of the polar precursor

Just as the suggestion of a polar precursor was based on a qualitative physical

understanding of the process generating the strong toroidal magnetic field that gives

rise the observed active regions, an extension of the temporal range of our

forecasting capability would clearly benefit from a similar qualitative physical

understanding of how the strong polar fields prevalent around sunspot minimum are

formed.

Magnetograph observations rather clearly indicate that the polar field is built up

as a result of the the poleward transport of trailing polarity flux from active regions,

while much of the leading polarity flux cancels with its counterpart on the other

hemisphere by cross-equatorial diffusion. In the currently widely popular Babcock–

Leighton scenario the poleward transport is interpreted as a combination of

turbulent diffusion and advection by a poleward meridional flow.17 This suggests

that the buildup of the polar field may be controlled by either of two effects:

(a) variations of the poleward flow speed

(b) variations in the tilt angles and/or latitudinal distribution of bipolar active

regions which ultimately determine the net flux imbalance in the meridional

direction.

In the following subsections these two influencing factors are considered in turn.

2.5.1 Photospheric flow variations

Considering the effect of meridional flow variations on intercycle variations is a

delicate task as such changes are also associated with the normal course of the solar

activity cycle, the overall flow at mid-latitudes being slower before and during

maxima and faster during the decay phase. Therefore, it is just the cycle-to-cycle

variation in this normal pattern that may be associated with the activity variations

between cycles. In this respect it is of interest to note that the poleward flow in the

late phases of Cycle 23 seems to have had an excess speed relative to the previous

cycle (Hathaway and Rightmire 2010). If this were a latitude-independent amplitude

modulation of the flow, then most flux transport dynamo models (e.g., Belucz et al.

2015) would predict a stronger than average polar field at the minimum, contrary to

observations. On the other hand, in the surface flux transport model of Wang et al.

(2009) an increased poleward flow actually results in weaker polar fields, as it lets

less leading polarity flux to diffuse across the equator and cancel there. As the

analysis by Muñoz-Jaramillo et al. (2010) has shown, the discrepancy resulted from

the form of the Babcock–Leighton source term in flux transport dynamo models,

and it can be remedied by substituting a pair of opposite polarity flux rings

representing each individual AR as source term instead of the a-term. With this

17 Note that the real situation may well be more complex than this simple scenario suggests: in numerical

simulations of spherical turbulent dynamos latitudinal transport by pumping effects is quite often

prevalent (see, e.g., Racine et al. 2011; Simard et al. 2016; Warnecke et al. 2018).
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correction, 2D flux transport dynamos and surface flux transport models agree in

predicting a weaker polar field for faster meridional flow.

It is known from helioseismology and magnetic correlation tracking that

meridional flow speed fluctuations follow a characteristic latitudinal pattern

associated with torsional oscillations and the butterfly diagram, consisting of a

pair of axisymmetric bands of latitudinal flows converging towards the activity

belts, migrating towards the equator, and accompanied by similar high-latitude

poleward branches (Snodgrass and Dailey 1996; Chou and Dai 2001; Beck et al.

2002; Liang et al. 2018; Lin and Chou 2018). This suggests interpreting the unusual

meridional flow speeds observed during Cycle 23 as an increased amplitude of this

migrating modulation, rather than a change in the large-scale flow speed (Cameron

and Schüssler 2010). In this case, the flows converging on the activity belts tend to

inhibit the transport of following polarities to the poles, resulting in a lower polar

field (Jiang et al. 2010b; note, however, that Švanda et al. 2007 find no change in

the flux transport in areas with increased flows). It is interesting to note that the

torsional oscillation pattern, and thus presumably the associated meridional flow

modulation pattern, was shown to be fairly well reproduced by a microquenching

mechanism due to magnetic flux emerging in the active belts (Petrovay and Forgács-

Dajka 2002). Alternatively, the modulation pattern may also be thermally induced

(Spruit 2003) or it may result from large-scale magnetic field torques (Passos et al.

2017; Hazra and Choudhuri 2017; Ruždjak et al. 2017). This suggests that stronger

cycles may be associated with a stronger modulation pattern, introducing a

nonlinearity into the flux transport dynamo model (Jiang et al. 2010b; Cameron and

Schüssler 2012; Karak and Choudhuri 2012). The relationship between activity

level and flow modulation, however, seems more complex than a simple

proportionality (Komm et al. 2017). In particular, the modulation signal in the

Cycle 24 activity belt seems to be too strong in comparison with the low amplitude

of the sunspot cycle.

In addition to a variation in the amplitude of migrating flow modulations, their

migration speed may also influence the cycle. Howe et al. (2009) pointed out that in

the minimum of Cycle 24 the equatorward drift of the torsional oscillation shear belt

corresponding to the active latitude of the cycle was slower than in the previous

minimum. They suggested that this slowing may explain the belated start of

Cycle 24.

Under the assumption that meridional flow modulations are the main factor

controlling the buildup of the poloidal field from AR sources, Hung et al. (2015),

Hung et al. (2017) suggest an inverse approach to derive flow variations from

magnetic data. As, however, we will see in the next subsection, the validity of the

underlying assumption is open to question.

In summary: while magnetically induced modulations of the meridional flow and

their effect on flux transport may be a potentially important nonlinear feedback

mechanism controlling intercycle activity variations, the limited observational

record and the apparent complexities of the interplay have as yet not permitted their

use as a precursor.
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2.5.2 Active region tilts

As luck would have it, soon after the first version of this review was finished, a

paper was published that prompted a flurry of activity in a completely new field. In

the paper Dasi-Espuig et al. (2010) analysed sunspot group catalogues extracted

from the Mt.Wilson and Kodaikanal photoheliograms for solar cycles 15–21,

focusing on the distribution of tilt angles of the longitudinal axis of bipolar active

regions to the azimuthal direction. Area-weighted averages of the tilt angles of

sunspot groups were calculated in latitudinal bins, then normalized by the latitude to

yield a tilt parameter. Two effects emerged from the analysis:

1. Tilt quenching (TQ): an anticorrelation between the amplitude of a solar cycle

and its mean tilt parameter.

2. Tilt precursor (TP): the product of the amplitude of a sunspot cycle with its

mean tilt parameter turned out to be a good predictor of the amplitude of the

subsequent cycle. Muñoz-Jaramillo et al. (2013b) further demonstrated that this

product is also a good predictor of the polar magnetic flux at minimum (as

reconstructed from polar facular counts), suggesting that the predictive potential

of this method is based on the role of tilt angles in controlling the amount of net

flux transported towards the poles.

The combination of TP with a TQ relationship upon which random fluctuations in

the tilt are superposed implies that intercycle variations in solar activity will be

controlled by a nonlinear feedback mechanism, into which a stochastic element is

incorporated. This realization prompted intense activity in the development of

model-based cycle prediction, to be discussed in the following section.

Ironically, in parallel with the major impact of the Dasi-Espuig et al. (2010)

paper on theoretical work, it was soon subjected to criticism on observational

grounds. Ivanov (2012) repeated the analysis, now including the Pulkovo sunspot

group catalogue (covering a shorter period, cycles 18–21). The TQ effect in the

Mt.Wilson data set was found to depend crucially on the low value of the mean tilt

for the anomalous strong cycle 19. In the Kodaikanal data the effect appeared more

robustly but it still seems to depend on high tilt values in cycles 15 and 16, for which

the Mt.Wilson set yields lower values. The Pulkovo data are consistent with the

Kodaikanal series but they only start with Cycle 18, so no definitive conclusion was

drawn from them.

In their hemispherically separated analysis of the Mt.Wilson data McClintock

and Norton (2013) found that in Cycle 19 a strong suppression of the tilt was only

present in the Southern hemisphere. Accordingly, the TQ effect is only seen in the

South.

Kitchatinov and Olemskoy (2011) analysed the Pulkovo data set, focusing on the

TP effect. Instead of considering average tilts, they evaluated the area-weighted

latitude difference between leading and trailing subgroups and averaged this

quantity for each cycle in their data set. While data were available for 3 cycles only,

they confirmed the good correlation between this predictor and a measure (the
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dipole–octupole index) of the amplitude of the polar magnetic field in the next

minimum.

A fourth tilt database was compiled by Baranyi (2015) based on the Debrecen

sunspot catalogues, while a fifth set of tilts was measured by Işık et al. (2018) from

solar drawings made at Kandilli Observatory for cycles 19–24. Overall, the results

for these cycles seem to compare well for the Kodaikanal, Pulkovo, Debrecen and

Kandilli data, but as cycles 15 and 16 are only covered by the Kodaikanal data, it is

no surprise that the TQ effect is not clearly seen in the shorter Debrecen and

Kandilli data sets.

All the previously considered data sets were based on sunspot positions alone,

without magnetic polarity information. Tilts of active regions taking into account

the magnetic polarities of spots were determined by Li and Ulrich (2012) from

Mt.Wilson and MDI magnetograms. McClintock et al. (2014) compared these

measurements with the Debrecen tilt data, focusing on anti-Hale regions which are

the major reason for the discrepancies. The occurrence rate of anti-Hale regions was

found to be 8.5%. Tilts of active regions taking into account the magnetic polarities

of spots were recently also determined by Tlatova et al. (2018) from the archive of

solar drawings at Mt.Wilson Observatory: these drawings include polarity

information since 1917. Their results concerning cycle dependence of tilts are

inconclusive.

In summary, the suspected tilt quenching and tilt precursor effects have opened

new directions in sunspot cycle forecasting, but the evidence is still controversial,

especially for TQ. These inconclusive results underline the importance of obtaining

more data and, especially, longer data sets. Contributions towards this goal like that

of Senthamizh Pavai et al. (2015), who determined tilts for cycles 7–10 from

sunspot drawings by Schwabe, are therefore highly valuable and may be key for a

later clarification of these issues.

In view of the doubts regarding the reality of TQ, attention has recently started to

turn towards alternatives. One such alternative, proposed by J. Jiang, might be

latitude quenching: the mean latitude of active regions in a given cycle was found to

be positively correlated with cycle amplitudes (Jiang et al. 2011a). From higher

latitudes a lower fraction of leading flux will manage to diffuse across the equator,

leaving less trailing flux to contribute to the polar fields. Therefore, the correlation

found represents a negative feedback effect—hence the name latitude quenching.

2.5.3 Alternatives to tilt quenching: inflows and latitude quenching

In view of the doubts regarding the reality of TQ, attention has recently started to

turn towards alternatives.

The tilts of active regions are usually attributed to the effect of Coriolis force on

the rising magnetic flux loops (Schmidt 1968; D’Silva and Choudhuri 1993; Fisher

et al. 1995; Pevtsov et al. 2014;). The tilt angle varies inversely with the initial field

strength, making the suggested tilt quenching effect quite plausible: stronger

toroidal fields should simply come with weaker tilt. (Note that the tilt also depends

on the entropy of the rising loop: a cycle-dependent variation in thermal properties
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of the layer where toroidal flux is stored may therefore also explain TQ, as shown by

Işık 2015.)

An alternative explanation for tilt quenching was put forward by Jiang et al.

(2010b) and Cameron and Schüssler (2012) who pointed out that the meridional

inflows directed towards the activity belts, discussed in Sect. 2.5.1 will tend to

reduce the AR tilts.

On the other hand, the activity-related meridional flow pattern may partly

originate from the superposition of more localized circular inflows towards

individual active regions (Haber et al. 2004; Švanda et al. 2008; Löptien et al.

2017). It is unclear whether such concentric flows can exert a torque on the flux

loops that may reduce their tilt; however this may not even be necessary:

simulations by Martin-Belda and Cameron (2017) suggested that the hindering

effect on the inflows on the separation of leading and trailing polarity fluxes is

sufficient to significantly reduce the amplitude of the dipolar seed field being built

up for the next cycle. This inflow effect might then even completely substitute TQ

as the main nonlinearity mechanism controlling intercycle variations

Another alternative to TQ, proposed by J. Jiang, might be latitude quenching: the
mean latitude of active regions in a given cycle was found to be positively

correlated with cycle amplitudes (Jiang et al. 2011a). From higher latitudes a lower

fraction of leading flux will manage to diffuse across the equator, leaving less

trailing flux to contribute to the polar fields. Therefore, the correlation found

represents a negative feedback effect—hence the name latitude quenching.

3 Model-based predictions

3.1 Surface flux transport models

Surface flux transport (SFT) models describe the transport of magnetic flux across

the solar surface, modelling it as an advective-diffusive transport:
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where h and / are colatitude and longitude, B is the radial component of the

magnetic flux density, g is the turbulent magnetic diffusivity, v is the speed of the

meridional flow, and XðhÞ is the differential rotation profile.

Equation (14) can be interpreted as the radial component of the induction

equation where the neglected radial terms have been replaced by the source term S
describing flux emergence and the heuristic decay term B=s, supposed to represent

vertical diffusion. The latter term is only occasionally used, to improve agreement

with observations.

SFT models were first developed in the 1980s for the interpretation of the then

newly available synoptic magnetogram record. This ‘‘age of enlightenment’’, to use
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the expression of Sheeley’s (2005) historical review, was followed by less intense

activity in the field until, from about 2010, a renaissance of SFT modelling ensued.

The revival was prompted by the increasing acceptance of the polar precursor as the

most reliable physical precursor technique: SFT models offered a way to ‘‘predict

the predictor’’, promising to increase the temporal scope of forecasts.

For detailed discussions of the advance made in SFT modelling we refer the

reader to the reviews by Jiang et al. (2014b) and Wang (2017). Here we only present

brief highlights of the main results from the past decade.

3.1.1 Parameter optimization

For an application of the method, the parameters in Eq. (14) such as g, vðhÞ or s
need to be specified. This problem has reopened the issue of parameter optimization

(Lemerle et al. 2015; Virtanen et al. 2017; Whitbread et al. 2017). Choosing the

right parameters is a nontrivial task as the outcome depends on the data used for

calibration and on the choice of the merit function for the optimization.

Recently Petrovay and Talafha (2019) presented the results of a large-scale

systematic study of the parameter space in an SFT model where the source term

representing the net effect of tilted flux emergence was chosen to represent a typical,

average solar cycle as described by observations, comparing the results with

observational constraints on the spatiotemporal variation of the polar magnetic field.

It was found that without a significant decay term in the SFT equation (i.e., for

s[ 10 years) the global dipole moment reverses too late in the cycle for all flow

profiles and parameters, providing independent supporting evidence for the need of

a decay term, even in the case of identical cycles. An allowed domain is found to

exist for s values in the 5–10 years range for all flow profiles considered. Generally

higher values of g (500–800) are preferred though some solutions with lower g are

still allowed.

3.1.2 Nonlinear feedback effects

Nonlinear feedback mechanisms such as TQ (Cameron et al. 2010), a variable

modulation of the meridional flow in the form of inflow belts flanking the active

latitudes (Jiang et al. 2010b, Cameron and Schüssler 2012), concentric inflows

around individual AR (Martin-Belda and Cameron 2016, 2017) or latitude

quenching (Jiang et al. 2011b) have been considered in many studies. With the

right parameterization, feedback was found to allow magnetic field reversals even

when a stronger cycle is followed by a considerably weaker cycle. [A difficulty in

obtaining reversal in such situations was a main motivation for the introduction of

the decay term in Eq. (14).]

It is a curious circumstance that TQ currently has stronger support from models

than from observations. Indeed, Cameron et al. (2010) found that a combination of

TQ with an SFT model results in polar field strengths that approximately correctly

predict the amplitude of the next cycle for Cycles 15/16–21/22. The same holds also

if the TQ results in the model as a consequence of meridional inflow belts (Cameron

and Schüssler 2012).
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3.1.3 Extending the polar precursor

Sunspot observations are available for several centuries, while proxy indicators of

the polar field strength start from the late nineteenth century only. Using sunspot

records to reconstruct the source term in SFT models, the polar field may also be

reconstructed for cycles where no polar field proxies are known. Such a programme

was carried out by Jiang et al. (2011a) who reconstructed the butterfly diagram from

the sunspot number record for the period since 1700; properties of the butterfly

‘‘wings’’ were correlated with the amplitudes and lengths of solar cycles based on

the GPR sunspot catalogue, then these correlations were used for reconstruction in

earlier times. In a subsequent work (Jiang et al. 2011b), the same authors used this

butterfly diagram as a source in an SFT model to determine polar fields. The derived

polar field values were found to correlate rather well with the amplitude of the

subsequent cycle, thereby extending the period of time for which we have evidence

for the polar precursor.

A deficiency of the source reconstruction based on sunspot catalogues is the lack

of information on magnetic polarities and on the distribution of weaker plage fields.

A promising new method based on the use of Ca II K synoptic maps combined with

available sunspot magnetic field measurements was recently successfully tested by

Virtanen et al. (2019).

3.1.4 The importance of fluctuations: rogue active regions

The nonlinear feedback effects discussed above define an essentially deterministic

mechanism of intercycle variations. While on the level of the spatiotemporal

distribution of individual active regions there may be numerous different

realizations of a sunspot cycle with a given sunspot number profile, one might

expect that the variation of at least the statistical average taken over all realizations

can be reliably predicted.

Starting from 2013, however, it was gradually realized that the behaviour of an

individual realization (like the real Sun) can strongly deviate from the statistical

expectations. The magnetic flux of the largest ARs in a solar cycle is comparable to

the flux in the polar caps where the polar magnetic field is concentrated around the

minimum. The amplitude of the polar field built up during a cycle is therefore highly

sensitive to the exact balance of leading vs. trailing polarity flux transported to the

poles and cancelled by cross-equator diffusion. Major plumes on the observational

magnetic butterfly diagram were identified by Cameron et al. (2013) as originating

from large cross-equatorial AR where cancellation between the two polarities is

minimal due to their advection in opposite directions by the meridional flow

diverging on the equator. Such cross-equatorial plumes were incorporated into an

SFT model by Cameron et al. (2014).

The role of random scatter in active region properties was further investigated by

Jiang et al. (2014a) who showed that the dipole contribution of a single active

region drops quite fast with heliographic latitudes. For those low-latitude active

regions with an unusually large contribution to the global dipole Nagy et al. (2017a)

introduced the name ‘‘rogue’’ AR. Representing an active region as a simple bipole
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with tilt angle a relative to the azimuthal direction, it is straightforward to show

from Eq. (12) that its contribution to the axial dipole is

dDBMR ¼ 3

4pR2
�

Fd sin a sin h; ð15Þ

where F is the magnetic flux and d is the angular separation of the two polarities.

Large values of F, d and/or a are therefore conditions for a significant ‘‘dynamo

effectivity’’ of an AR, i.e., a significant contribution to the polar field built up in the

cycle. However, Eq. (15) only gives the initial contribution to the dipole moment.

For AR further from the equator cross-equatorial cancellation of the leading polarity

will be less efficient, fluxes of both polarities will be largely transferred to the pole

and their net effect will mostly cancel: this is the reason why the final dipole

contributions and therefore the dynamo effectivity of AR also drops quite fast with

heliographic latitude.

3.1.5 Explaining the end of the modern maximum

Beside the general investigations discussed, a special objective of SFT modelling

efforts was to correctly ‘‘hindcast’’ the unusually weak polar fields in the minimum

of Cycle 24 that brought the Modern Maximum to an end. Initial efforts (Yeates

2014; Upton and Hathaway 2014a) encountered difficulties in reproducing the polar

field, until Jiang et al. (2015) were finally able to correctly reproduce the evolution

of the polar field by incorporating in their source term individual observed active

regions (modelled as idealized bipoles, but with tilt values, fluxes and separations

derived from observations). After carefully excluding recurrent ARs from the source

term they found that the chief responsibility for the deviation of the polar flux from

its expected value lies with a low number of large low-latitude rogue AR with non-

Hale or non-Joy orientations.

In a similar research Upton and Hathaway (2014b) focused on the predictability

of the evolution of the axial dipole moment. From some selected instant onwards,

they substitute actual ARs with the ARs of another solar cycle of similar amplitude,

and they find that the dipole evolution can be well predicted over � 3 years. It

should be noted, however, that this study does not cover the period 2003–2006

which seems to have been crucial in the development of an anomalously low dipole

moment at the end of Cycle 23. Predictability was also considered by Whitbread

et al. (2018) who addressed the issue how many AR need to be taken into account to

reproduce the dipole moment at the end of a cycle. Ordering active regions by

decreasing dipole moment contribution they found that, despite the fact that the

polar magnetic flux is comparable to the flux a single large AR, the dipole moment

at the end of a cycle cannot be reproduced without accounting for the net

contribution from hundreds of active regions during the cycle.

The tilt of active regions is a manifestation of the writhe of the underlying flux

loop, and writhe is one form of helicity (cf. Petrovay et al. 2006), while nonzero

helicity is a condition for free magnetic energy available for eruptions. On this

ground Petrovay and Nagy (2018) tentatively suggested that there may be a large
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overlap between rogue AR and flare/CME-productive AR. A relevant study was

recently undertaken by Jiang et al. (2019) who found that flare productivity and

dynamo effectivity of ARs are governed by different parameters. Flare productivity

primarily depends on the structural complexity of ARs, large flares being much

more common d-spots, while the dipole moment contribution of an AR, which

ultimately determines its effect on the dynamo, is determined by the latitudinal

separation of polarities. So while there is indeed a large overlap between the flare-

productive ARs and ‘‘rogue’’ or exceptional ARs, the two characteristics do not

necessarily go hand in hand.

3.1.6 Forecasting Cycle 25

The buildup of the polar dipole moment during the ongoing Cycle 24 has been

followed with keen attention. Researchers analysed a number of important episodes

(e.g., Petrie and Ettinger 2017). Yeates et al. (2015) examined the origin of a

prominent poleward surge in the magnetic butterfly diagram in 2010–11 by a

combination of analysis of observational data and SFT simulations, concluding that

the episode is not expected to have a major imact of the dipole buildup. Sun et al.

(2015) presented an observational analysis of the polar reversal process in Cycle 24.

This is of particular interest owing to the ill-defined nature of polarity reversal in the

N hemisphere: the field strength here lingered around zero for well over two years

until it finally started to increase towards the end of 2014. (It may be worth noting

that this was correctly predicted in the SFT simulation of Upton and Hathaway

2014b.) As a result, the phase shift between the hemispheres has changed sign:

while activity peaked first on the N hemisphere in the last few cycles, indications are

that in Cycle 25 activity will first peak in the South (cf. also Labonville et al. 2019).

The phase shift was the consequence of a few surges of opposite polarity that

hindered the growth of flux in the N polar region.

Going further than focusing on selected events, a number of researchers

attempted to predict Cycle 25 by incorporationg all ARs of Cycle 24 in the source

term of an SFT simulation and modelling further evolution under some more or less

plausible assumptions.

Allowing a random scatter in AR tilts and also in the time-dependent meridional

flow Hathaway and Upton (2016) and Upton and Hathaway (2018) arrived at a

prediction similar to or marginally lower than Cycle 24. A similar conclusion

(Cycle 25 somewhat weaker than Cycle 24) was reached by Iijima et al. (2017)

who, based on the plateau-like nature of the dipole moment maximum discussed in

Sect. 2.3 above, assume no further contributions to the dipole moment.

Considering 50 different random realizations drawn from a statistical ensemble

of ARs Cameron et al. (2016) predict that Cycle 25 will be similar or slightly

stronger than Cycle 24. In a similar later study with improved technical details Jiang

et al. (2018) arrived at the prediction that Cycle 25 will peak in the range 93 to 159

(see also Jiang and Cao 2018).
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3.2 The solar dynamo: a brief summary of current models

While attempts to predict future solar cycles on the basis of the empirical sunspot

number record have a century-old history, predictions based on physical models of

solar activity only started one solar cycle ago. The background of this new trend is,

however, not some significant improvement in our understanding of the solar

dynamo. Rather, it is the availability of increasingly fast new computers that made it

possible to fine-tune the parameters of certain dynamo models to reproduce the

available sunspot record to a good degree of accuracy and to apply data assimilation

methods (such as those used in terrestrial weather prediction) to these models. This

is not without perils. On the one hand, the capability of multiparametric models to

fit a multitude of observational data does not prove the conceptual correctness of the

underlying model. On the other hand, in chaotic or stochastic systems such as the

solar dynamo, fitting a model to existing data will not lead to a good prediction

beyond a certain time span, the extent of which can only be objectively assessed by

‘‘postdiction’’ tests, i.e., checking the models predictive skill by trying to ‘‘predict’’

previous solar cycles and comparing those predictions to available data. Apparently

successful postdiction tests have led some groups to claim a breakthrough in solar

cycle prediction owing to the model-based approach (Dikpati and Gilman 2006;

Kitiashvili and Kosovichev 2008). Yet, as we will see in the following discussion, a

closer inspection of these claims raises many questions regarding the role that the

reliance on a particular physical dynamo model plays in the success of their

predictions.

Extensive summaries of the current standing of solar dynamo theory are given in

the reviews by Petrovay (2000), Ossendrijver (2003), Solanki et al. (2006),

Charbonneau (2010) and Cameron et al. (2017). As explained in detail in those

reviews, all current models claiming to acceptably represent the solar dynamo are

based on the mean-field theory approach wherein a coupled system of partial

differential equations governs the evolution of the toroidal and poloidal components

of the large-scale magnetic field. Until recently, the large-scale field was assumed to

be axially symmetric in practically all models. In some nonlinear models the

averaged equation of motion, governing large-scale flows is also coupled into the

system.

In the simplest case of homogeneous and isotropic turbulence, where the scale l
of turbulence is small compared to the scale L of the mean variables (scale

separation hypothesis), the dynamo equations have the form

oB

ot
¼ r
 ðU
 Bþ aBÞ � r 
 ðgT 
rBÞ: ð16Þ

Here B and U are the large-scale mean magnetic field and flow speed, respectively;

gT is the magnetic diffusivity (dominated by the turbulent contribution for the

highly conductive solar plasma), while a is a parameter related to the non-mirror

symmetric character of the magnetized plasma flow.

In the case of axial symmetry the mean flow U may be split into a meridional

circulation Uc and a differential rotation characterized by the angular velocity

profile X0ðr; hÞ:
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U ¼ Uc þ r sin hX0 e/;

where r, h, / are spherical coordinates and e/ is the azimuthal unit vector. Now

introducing the shear

X ¼ r sin hrX0; X ¼ � sgn
dX0

dr
� jXj;

assuming a � XL and ignoring spatial derivatives of a and gT , Eq. (16) simplifies

to the pair

oA

ot
¼aB � ðUc � rÞA � ðr � UcÞA þ gT r2A; ð17Þ

oB

ot
¼X

oA

ox
� ðUc � rÞB � ðr � UcÞB þ gT r2B; ð18Þ

where B and A are the toroidal (azimuthal) components of the magnetic field and of

the vector potential, respectively, and oA
ox is to be evaluated in the direction 90�

clockwards of X (along the isorotation surface) in the meridional plane. These are

the classic aX dynamo equations, including a meridional flow.

In the more mainstream solar dynamo models the strong toroidal field is now

generally thought to reside near the bottom of the solar convective zone. Indeed, it is

known that a variety of flux transport mechanisms such as pumping (Petrovay 1994)

remove magnetic flux from the solar convective zone on a timescale short compared

to the solar cycle. Following earlier simpler numerical experiments, MHD

numerical simulations have indeed demonstrated this pumping of large scale

magnetic flux from the convective zone into the tachocline below, where it forms

strong coherent toroidal fields (Browning et al. 2006; Fan and Fang 2014; Warnecke

et al. 2018). As this layer is also where rotational shear is maximal, it is plausible

that the strong toroidal fields are not just stored but also generated here, by the

winding up of poloidal field.18 The two main groups of dynamo models, interface

dynamos and flux transport dynamos, differ mainly in their assumptions about the

site and mechanism of the a-effect responsible for the generation of a new poloidal

field from the toroidal field.

In interface dynamos a is assumed to be concentrated near the bottom of the

convective zone, in a region adjacent to the tachocline, so that the dynamo operates

as a wave propagating along the interface between these two layers. While these

models may be roughly consistent and convincing from the physical point of view,

they have only had limited success in reproducing the observed characteristics of the

solar cycle, such as the butterfly diagram.

Flux transport dynamos, in contrast, rely on the Babcock–Leighton mechanism

for a, arising due to the action of the Coriolis force on emerging flux loops, and they

assume that the corresponding a-effect is concentrated near the surface. They keep

18 Some doubts concerning this deep-seated storage of toroidal flux recently arose as in at least one MHD

simulation (Nelson et al. 2013) the toroidal flux was found to be floating in a wreath-like structure in the

middle of the convective envelope.
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this surface layer incommunicado with the tachocline by introducing some arbitrary

unphysical assumptions (such as very low diffusivities in the bulk of the convective

zone). The poloidal fields generated by this surface a-effect are then advected to the

poles and there down to the tachocline by the meridional circulation—which,

accordingly, has key importance in these models. The equatorward deep return flow

of the meridional circulation is assumed to have a significant overlap with the

tachocline (another controversial point), and it keeps transporting the toroidal field

generated by the rotational shear towards the equator. By the time it reaches lower

latitudes, it is amplified sufficiently for the flux emergence process to start, resulting

in the formation of active regions and, as a result of the Babcock–Leighton

mechanism, in the reconstruction of a poloidal field near the surface with a polarity

opposed to that in the previous 11-year cycle. While flux transport models may be

questionable from the point of view of their physical consistency, they can be

readily fine-tuned to reproduce the observed butterfly diagram quite well. This ready

adaptability made flux transport dynamos hugely popular in the research community

(Charbonneau 2007; Karak et al. 2014). In flux transport dynamos the a term is

usually nonlocal (generating poloidal field at the surface out of toroidal field at the

bottom of the convective zone).

It should be noted that while the terms ‘‘interface dynamo’’ and ‘‘flux transport

dynamo’’ are now very widely used to describe the two main approaches, the more

generic terms ‘‘advection-dominated’’ and ‘‘diffusion-dominated’’ would be

preferable in several respects. This classification allows for a continuous spectrum

of models depending on the numerical ratio of advective and diffusive timescales

(for communication between surface and tachocline). In addition, even at the two

extremes, classic interface dynamos and circulation-driven dynamos are just

particular examples of advection or diffusion dominated systems with different

geometrical structures.

3.3 Is model-based cycle prediction feasible?

As it can be seen even from the very brief and sketchy presentation given above, all

current solar dynamo models are based on a number of quite arbitrary assumptions

and depend on a number of free parameters, the functional form and amplitude of

which is far from being well constrained. For this reason, Bushby and Tobias (2007)

rightfully say that all current solar dynamo models are only of ‘‘an illustrative

nature’’. This would suggest that as far as solar cycle prediction is concerned, the

best we should expect from dynamo models is also an ‘‘illustrative’’ reproduction of

a series of solar cycles with the same kind of long-term variations (qualitatively and,

in the statistical sense, quantitatively) as seen in solar data. Indeed, Bushby and

Tobias (2007) demonstrated that even a minuscule stochastic variation in the

parameters of a particular flux transport model can lead to large, unpredictable vari-

ations in the cycle amplitudes. And even in the absence of stochastic effects, the

chaotic nature of nonlinear dynamo solutions seriously limits the possibilities of

prediction, as the authors find in a particular interface dynamo model: even if the

very same model is used to reproduce the results of one particular run, the

impossibility of setting initial conditions exactly representing the system implies
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that predictions are impossible even for the next cycle. Somewhat better results are

achieved by an alternative method, based on the phase space reconstruction of the

attractor of the nonlinear system—this is, however, a purely empirical time series

analysis technique for which no knowledge of the detailed underlying physics is

needed. (Cf. Sect. 4.3 above.)

Despite these very legitimate doubts regarding the feasibility of model-based

prediction of solar cycles, in recent years several groups have claimed to be able to

predict upcoming solar cycles on the basis of dynamo models with a high

confidence. So let us consider these claims.

3.4 Explicit models

3.4.1 Axisymmetric models

The first attempt at model-based solar cycle prediction was the work of the solar

dynamo group in Boulder (Dikpati et al. 2006; Dikpati and Gilman 2006). Their

model is a flux transport dynamo, advection-dominated to the extreme. The strong

suppression of diffusive effects is assured by the very low value (less than

20 km2=s) assumed for the turbulent magnetic diffusivity in the bulk of the

convective zone. As a result, the poloidal fields generated near the surface by the

Babcock–Leighton mechanism are only transported to the tachocline on the very

long, decadal time scale of meridional circulation. The strong toroidal flux residing

in the low-latitude tachocline, producing solar activity in a given cycle is thus the

product of the shear amplification of poloidal fields formed near the surface about

2–3 solar cycles earlier, i.e., the model has a ‘‘memory’’ extending to several cycles.

The mechanism responsible for cycle-to-cycle variation is assumed to be the

stochastic nature of the flux emergence process. In order to represent this variability

realistically, the model drops the surface a-term completely (a separate, smaller a
term is retained in the tachocline); instead, the generation of poloidal field near the

surface is represented by a source term, the amplitude of which is based on the

sunspot record, while its detailed functional form remains fixed.

Dikpati and Gilman (2006) found that, starting off their calculation by fixing

the source term amplitudes of sunspot cycles 12 to 15, they could predict the

amplitudes of each subsequent cycle with a reasonable accuracy, provided that the

relation between the relative sunspot numbers and the toroidal flux in the

tachocline is linear, and that the observed amplitudes of all previous cycles are

incorporated in the source term for the prediction of any given cycle. For

Cycle 24 the model predicted peak smoothed annual relative sunspot numbers of

150 (v1) or more. Elaborating on their model, they proceeded to apply it

separately to the northern and southern hemispheres, to find that the model can

also be used to correctly forecast the hemispheric asymmetry of solar activity

(Dikpati et al. 2007).

Even though, ultimately, the prediction proved to be off by about a factor of 2,

the extraordinary claims of this pioneering research prompted a hot debate in the

dynamo community. Besides the more general, fundamental doubt regarding the
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feasibility of model-based predictions (see Sect. 4.2 above), more technical

concerns arose. In order to understand the origin of the predictive skill of the

Boulder model, Cameron and Schüssler (2007) studied a version of the model

simplified to an axially symmetric SFT model, wherein only the equation for the

radial field component is solved as a function of time and latitude. The equation

includes a source term similar to the one used in the Boulder model. As the

toroidal flux does not figure in this simple model, the authors use the cross-

equatorial flux U (the amount of magnetic flux crossing the equator in a given

time) as a proxy, arguing that this may be more closely linked to the amplitude of

the toroidal field in the upcoming cycle than the polar field. They find that U
indeed correlates quite well (correlation coefficients r � 0:8��0:9, depending on

model details) with the amplitude of the next cycle, as long as the form of the

latitude dependence of the source term is prescribed and only its amplitude is

modulated with the observed sunspot number series (‘‘idealized model’’). But

surprisingly, the predictive skill of the model is completely lost if the prescribed

form of the source function is dropped and the actually observed latitude

distribution of sunspots is used instead (‘‘realistic model’’). Cameron and

Schüssler (2007) interpreted this by pointing out that U is mainly determined

by the amount of very low latitude flux emergence, which in turn occurs mainly in

the last few years of the cycle in the idealized model, while it has a wider

temporal distribution in the realistic model. The conclusion is that the root of the

apparently good predictive skill of the truncated model (and, by inference, of the

Boulder model it is purported to represent) is actually just the good empirical

correlation between late-phase activity and the amplitude of the next cycle,

discussed in Sect. 2.1 above. This correlation is implicitly ‘‘imported’’ into the

idealized flux transport model by assuming that the late-phase activity is

concentrated at low latitudes, and therefore gives rise to cross-equatorial flux

which then serves as a seed for the toroidal field in the next cycle. So if Cameron

and Schüssler (2007) are correct, the predictive skill of the Boulder model is due

to an empirical precursor and is thus ultimately explained by the good old

Waldmeier effect (cf. Sect. 1.4.3) In view of the fact that no version of the

Boulder model with a modified source function incorporating the realistic

latitudinal distribution of sunspots in each cycle was ever presented, this

explanation seems to be correct, despite the fact that the effective diffusivity

represented by the sink term in the reduced model is significantly higher than in

the Boulder model, and consequently, the reduced model will have a more limited

memory, cf. Yeates et al. (2008).

Another flux transport dynamo code, the Surya code, originally developed by

A. Choudhuri and coworkers in Bangalore, has also been utilized for prediction

purposes. The crucial difference between the two models is in the value of the

turbulent diffusivity assumed in the convective zone: in the Bangalore model this

value is 240 km2=s, 1–2 orders of magnitude higher than in the Boulder model,

and within the physically plausible range (Chatterjee et al. 2004). As a result of

the shorter diffusive timescale, the model has a shorter memory, not exceeding

one solar cycle. As a consequence of this relatively rapid diffusive communication
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between surface and tachocline, the poloidal fields forming near the surface at low

latitudes due to the Babcock–Leighton mechanism diffuse down to the tachocline

in about the same time as they reach the poles due to the advection by the

meridional circulation. In these models, then, polar magnetic fields are not a true

physical precursor of the low-latitude toroidal flux, and their correlation is just due

to their common source. In the version of the code adapted for cycle prediction

(Choudhuri et al. 2007; Jiang et al. 2007), the ‘‘surface’’ poloidal field (i.e., the

poloidal field throughout the outer half of the convection zone) is rescaled at each

minimum by a factor reflecting the observed amplitude of the Sun’s dipole field.

The model showed reasonable predictive skill for the last three cycles for which

data are available, and could even tackle hemispheric asymmetry (Goel and

Choudhuri 2009). For Cycle 24, the predicted amplitude was 30–35% lower than

Cycle 23.

In retrospect, these first attempts at model-based solar cycle prediction are now

generally seen as precursor methods in disguise. Cameron and Schüssler (2007)

convincingly argued that the apparent predictive (postdictive) skill of the Boulder

model was related to the ‘‘minimax’’ family of internal precursors, based on the

Waldmeier law combined with the overlap of consecutive cycles (see Sect. 2.1).

The predictive skill of the Surya model, on the other hand, is based on the polar

precursor: essentially, the polar field amplitude at minimum is set to its observed

value, and the model simply mechanically winds up the poloidal field into a toroidal

field, ensuring a proportionality.

A more sophisticated approach to dynamo based predictions was spurred by the

realization of the importance of nonlinearities like TQ and stochastic effects in SFT

models. In particular, the significance of the effect of individual active regions in the

buildup of poloidal fields gave an impetus to the development of non-axisymmetric

models where individual AR can be treated. Nevertheless, Kitchatinov et al. (2018)

recently constructed an axisymmetric flux transport dynamo where stochastic

effects were still retained as fluctuations of the a parameter. It was found that with a

correlation time on the order of a month the model is able to mimick the effects of

rogue AR such as intercycle variations and even the triggering of grand minima, as

in the model of Nagy et al. (2017a).

3.4.2 Nonaxisymmetric models

The first dynamo model to explicitly deal with individual AR was constructed by

Yeates and Muñoz-Jaramillo (2013). Emerging flux loops in this model were

created by imposed upflows with properties calibrated to reproduce observed AR

characteristics. Another 3D code capable of dealing with individual AR, the

STABLE code was developed in Boulder (Miesch and Dikpati 2014; Miesch and

Teweldebirhan 2016).

The third such code is the 2
 2D code of the Montreal group (Lemerle et al.

2015; Lemerle and Charbonneau 2017). This latter code ingenuously combines an

axially symmetric flux transport dynamo code with a 2D SFT code. The dynamo

code couples to the SFT code by an emergence function specifying the locations and

properties of the randomly created bipolar source regions for the SFT, based on the
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distribution of the toroidal field. The azimuthally averaged magnetic field resulting

from the SFT component, in turn, provides the upper boundary condition for the flux

transport model. The model is computationally highly efficient, optimizable, and it

was carefully calibrated to reproduce the observed statistics of active regions in

Cycle 21. It can be run for hundreds or thousands of cycles, thereby providing a data

base for analysis that far exceeds the observational record of solar cycles. While the

model’s behaviour also displays some differences relative to the real Sun (esp. in the

phase relationship of the poloidal and toroidal fields), intercycle variations

comparable to those seen in the real Sun are displayed by the solutions, including

Dalton-like minima and grand minima (Lemerle and Charbonneau 2017; Nagy et al.

2017a).

Investigations in close analogy with this were also undertaken using the STABLE

model. Karak and Miesch (2017) considered the effect of tilt quenching and tilt

scatter, and found that the scatter can be a main factor behind long-term activity

variations, while even a subtle tilt quenching effect is sufficient to limit the growth

of the dynamo. Karak and Miesch (2018) found that fluctuations in AR tilt can be

responsible for both the onset of and recovery from grand minima. While these

results are in general agreement with those obtained with other codes, in another

work based on the STABLE model Hazra et al. (2017) reported that the dynamo

effectivity of individual ARs increases with heliographic latitude, in contradiction to

other results and to expectations based on the importance of cross-equatorial

diffusion for the removal of leading polarity flux. It may be that diffusion of weak

magnetic flux through the surface might be responsible for these results—an effect

that, by construction, is avoided in the 2
 2D model and which can also be

suppressed by introducing downwards pumping of the magnetic field (Karak and

Cameron 2016).

Fig. 13 Model ensemble predictions from the 2
 2D dynamo model, driven by observational data up to
November 2017, after Labonville et al. (2019). The time variation of the total magnetic flux in the

Northern (top) and Southern (bottom) hemisphere are shown in units of 1021 Mx

123

Solar cycle prediction Page 55 of 93 2



These nonaxisymmetric dynamo models have now reached a level where actual

physics-based prediction is within reach. A new generation of dynamo-based cycle

predictions is heralded by the work of Labonville et al. (2019) who used data

assimilation in the 2
 2D to arrive to a state closely mimicking the current state of

the solar dynamo, then run the code further to see its future development. Repeating

these runs with many different random realizations of the AR emergences the

authors generated an ensemble of future solar dynamo models (Fig. 13). This

enabled them to give both a mean forecast and to attribute meaningful errors to their

forecast. They predicted a peak R value of 89þ29
�14 for cycle 25, the maximum

occurring in 2025:3þ0:89
�1:05. The forecast is also broken down to hemispheres: activity

in the North is predicted to peak 6 months later but at a 20% higher level than in the

South.

3.5 Truncated models

The ‘‘illustrative’’ nature of current solar dynamo models is nowhere more clearly

on display than in truncated or reduced models where some or all of the detailed

spatial structure of the system is completely disregarded, and only temporal

variations are explicitly considered. This is sometimes rationalised as a truncation or

spatial integration of the equations of a more realistic inhomogenous system; in

other cases, no such rationalisation is provided, representing the solar dynamo by an

infinite, homogeneous or periodic turbulent medium where the amplitude of the

periodic large-scale magnetic field varies with time only.

In the present subsection we deal with models that do keep one spatial variable

(typically, the latitude), so growing wave solutions are still possible—these models,

then, are still dynamos even though their spatial structure is not in a good

correspondence with that of the solar dynamo.

This approach in fact goes back to the classic migratory dynamo model of Parker

(1955) who radially truncated (i.e., integrated) his equations to simplify the

problem. Parker seems to have been the first to employ a heuristic relaxation term of

the form �Br=sd in the poloidal field equation to represent the effect of radial

diffusion; here, sd ¼ d2=gT is the diffusive timescale across the thickness d of the

convective zone. His model was generalized by Moss et al. (2008) and Usoskin

et al. (2009b) to the case when the a-effect includes an additive stochastic noise,

and nonlinear saturation of the dynamo is achieved by a-quenching. These authors

do not make an attempt to predict solar activity with their model but they can

reasonably well reproduce some features of the very long term solar activity record,

as seen from cosmogenic isotope studies.

The other classic reduced dynamo model is that of Leighton (1969), the first

mathematical formulation of the flux transport dynamo concept. An updated version

of this dynamo, recently developed by Cameron and Schüssler (2017a) is a very

promising, simple and versatile tool to reproduce many of the observed features of

the solar dynamo with simple parameterizations. While it has not yet been utilized

for cycle prediction, it has already proved to be useful in understanding long-term
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activity variations such as the dominant periods in hemispheric asymmetry

(Schüssler and Cameron 2018).

Another radially truncated model, this time formulated in a Cartesian system, is

that of Kitiashvili and Kosovichev (2009). In this model stochastic effects are not

considered and, in addition to using an a-quenching recipe, further nonlinearity is

introduced by coupling in the Kleeorin–Ruzmaikin equation (Zeldovich et al. 1984)

governing the evolution of magnetic helicity, which in the hydromagnetic case

contributes to a. Converting the toroidal field strength to relative sunspot number

using the Bracewell transform, Eq. (3), the solutions reproduce the asymmetric

profile of the sunspot number cycle. For sufficiently high dynamo numbers the

solutions become chaotic, cycle amplitudes show an irregular variation. Cycle

amplitudes and minimum–maximum time delays are found to be related in a way

reminiscent of the Waldmeier relation.

Building on these results, Kitiashvili and Kosovichev (2008) attempted to predict

solar cycles using a data assimilation method. The approach used was the so-called

Ensemble Kalman Filter method. Applying the model for a ‘‘postdiction’’ of the last

8 solar cycles yielded astonishingly good results, considering the truncated and

arbitrary nature of the model and the fundamental obstacles in the way of reliable

prediction discussed above. The question may arise whether the actual physics of

the model considered has any significant role in this prediction, or we are dealing

with something like the phase space reconstruction approach discussed in Sect. 4.3

where basically any model with an attractor that looks reasonably similar to that of

the actual solar dynamo would do. Either way, the method is remarkable. Its

prediction for Cycle 24 essentially proved to be correct. An early prediction for

Cycle 25 (Kitiashvili 2016) yielded a maximum occurring in 2023/24 at a level

R ¼ 90� 15 (v2 values), with the cycle starting in 2019/20. It is noteworthy that a

forecast considering observational data up to the previous minimum (2008) already

yielded quite similar results for the amplitude, although the timing of the maximum

would have been expected earlier. Understanding the origin of this impressive

apparent predictive skill certainly deserves more in-depth research.

3.6 The Sun as an oscillator

An even more radical simplification of the solar dynamo problem ignores any

spatial dependence in the solutions completely, concentrating on the time

dependence only. Spatial derivatives appearing in Eqs. (17) and (18) are estimated

as r� 1=L and the resulting terms Uc=L and gT=L2 as 1=s where s is a

characteristic time scale. This results in the pair

_A ¼aB � A=s; ð19Þ

_B ¼ðX=LÞA � B=s; ð20Þ

which can be combined to yield
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€B ¼ D � 1

s2
B � 2

s
_B; ð21Þ

where D ¼ aXs2=L is the dynamo number. For D\1, Eq. (21) clearly describes a

damped linear oscillator. For D[ 1, solutions have a non-oscillatory character. The

system described by Eq. (21), then, is not only not a true dynamo (missing the

spatial dependence) but it does not even display growing oscillatory solutions that

would be the closest counterpart of dynamo-like behaviour in such a system.

Nevertheless, there are a number of ways to extend the oscillator model to allow for

persistent oscillatory solutions, i.e., to turn it into a relaxation oscillator:

1. The most straightforward approach is to add a forcing term þ sinðx0tÞ to the

r.h.s. of Eq. (21). Damping would cause the system to relax to the driving

period 2p=x0 if there were no stochastic disturbances to this equilibrium.

Hiremath (2006) fitted the parameters of the forced and damped oscillator

model to each observed solar cycle individually; then in a later work (Hiremath

2008) he applied linear regression to the resulting series to provide a forecast

(see Sect. 4.1 above).

2. Another trick is to account for the p=2 phase difference between poloidal and

toroidal field components in a dynamo wave by introducing a phase factor i into
the first term on the r.h.s. of Eq. (20). This can also be given a more formal

derivation as equations of this form result from the substitution of solutions of

the form A / eikx, B / eiðkxþp=2Þ into the 1D dynamo equations. This route,

combined with a nonlinearity due to magnetic modulation of differential

rotation described by a coupled third equation, was taken by Weiss et al. (1984).

Their model displayed chaotic behaviour with intermittent episodes of low

activity similar to grand minima. The generic normal form model recently

introduced by Cameron and Schüssler (2017b) is also loosely related to this

approach.

3. Wilmot-Smith et al. (2006) showed that another case where dynamo-like

behaviour can be found in an equation like (21) is if the missing effects of finite

communication time between parts of a spatially extended system are

reintroduced by using a time delay Dt, evaluating the first term on the r.h.s.

at time t � Dt to get the value for the l.h.s. at time t. This time-delay approach

has been further developed by Hazra et al. (2014) and Turner and Ladde (2018).

4. Yet another possibility is to introduce a nonlinearity into the model by assuming

D ¼ D0½1� f ðBÞ	 where f ðB ¼ 0Þ ¼ 0 and f � 0 everywhere. (Note that any

arbitrary form of a- or X-quenching can be cast in the above form by series

expansion.) The governing equation then becomes one of a nonlinear oscillator:

€B ¼ D0 � 1

s2
B � 2

s
_B � D0 � 1

s2
Bf ðBÞ: ð22Þ

In the most commonly assumed quenching mechanisms the leading term in f(B) is
quadratic; in this case Eq. (22) describes a Duffing oscillator (Kanamaru 2008). For

large positive dynamo numbers, D0  1, then, the large nonlinear term dominates
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for high values of B, its negative sign imposing oscillatory behaviour; yet the origin

is a repeller so the oscillation will never be damped out. The Duffing oscillator was

first considered in the solar context by Paluš and Novotná (1999).

More generally, a complete spatial truncation of the nonlinear aX dynamo

equations with a dimensional analysis of some of the terms (see review by Lopes

et al. 2014) can be shown to give rise to a nonlinear oscillator equation of the form

€B ¼ �x2B � lðnB2 � 1Þ _B � cB3 ð23Þ

where B is the amplitude of the toroidal magnetic field, and the parameters l, n and

c may be expressed by the dynamo parameters (dynamo number, meridional flow

amplitude, nonlinearity parameters). This is a combination of the van der Pol and

Duffing oscillators, the two most widely studied nonlinear oscillator problems.

Under certain conditions on the parameters, it is reduced to a van der Pol oscillator
(Adomian 1989; Mininni et al. 2001; Kanamaru 2007):

€n ¼ � nþ lð1� n2Þ _n; ð24Þ

with l[ 0. From this form it is evident that the problem is equivalent to that of an

oscillator with a damping that increases with amplitude; in fact, for small ampli-

tudes the damping is negative, i.e., the oscillation is self-excited.

These simple nonlinear oscillators were among the first physical systems where

chaotic behaviour was detected (when a periodic forcing was added). Yet, curiously,

they first emerged in the solar context precisely as an alternative to chaotic

behaviour. Considering the mapping of the solar cycle in the differential phase

space fB; dB=dtg, Mininni et al. (2000) got the impression that, rather than showing

signs of a strange attractor, the SSN series is adequately modelled by a van der Pol

oscillator with stochastic fluctuations. This concept was further developed by Lopes

and Passos (2009) who fitted the parameters of the oscillator to each individual

sunspot cycle. Subsequently, this parameter fitting was also exploited for cycle

prediction purposes (Passos 2012). The parameter l is related to the meridional flow

speed and the fit indicates that a slower meridional flow may have been responsible

for the Dalton minimum. This was also corroborated in an explicit dynamo model

(the Surya code) —however, as we discussed in Sect. 2.5.1, this result of flux

transport dynamo models is spurious and the actual effect of a slower meridional

flow is likely to be opposite to that suggested by the van der Pol oscillator model.

In an alternative approach to the problem, Nagovitsyn (1997) attempted to

constrain the properties of the solar oscillator from its amplitude–frequency

diagram, suggesting a Duffing oscillator driven at two secular periods. While his

empirical reconstruction of the amplitude–frequency plot may be subject to many

uncertainties, the basic idea is certainly noteworthy.

A further twist to the oscillator representation of the solar cycle is to consider a

system of two coupled nonlinear oscillators (Kuramoto model). This approach has

been taken in a series of papers by Blanter et al. (2014; 2016). The two variables

were taken to represent the sunspot numbers and the geomagnetic aa index,

considered to be proxies for the toriodal and poloidal field amplitudes, respectively.

In a later work (Blanter et al. 2017) a coupled oscillator model was employed to
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account for the time variation of hemispheric asymmetries of solar activity, as

known from observations (Norton and Gallagher 2010; Norton et al. 2014).

In summary: despite its simplicity, the oscillator representation of the solar cycle

is a relatively new development in dynamo theory, and its obvious potential for

forecasting purposes is yet to be fully exploited.

4 Extrapolation methods

In contrast to precursor methods, extrapolation methods only use the time series of

sunspot numbers (or whichever solar activity indicator is considered) but they

generally rely on more than one previous point to identify trends that can be used to

extrapolate the data into the future. They are therefore also known as time series
analysis or, for historic reasons, regression methods.

A cornerstone of time series analysis is the assumption that the time series is

homogeneous, i.e., the mathematical regularities underlying its variations are the

same at any point of time. This implies that a forecast for, say, three years ahead has

equal chance of success in the rising or decaying phase of the sunspot cycle, across

the maximum or, in particular, across the minimum. In this case, distinguishing

intracycle and intercycle memory effects, as we did in Sects. 1.4.2 and 2, would be

meaningless. This concept of solar activity variations as a continuous process stands

in contrast to that underlying precursor methods, where solar cycles are thought of

as individual units lasting essentially from minimum to minimum, correlations

within a cycle being considerably stronger than from one cycle to the next. While,

as we have seen, there is significant empirical evidence for the latter view, the

possibility of time homogeneity cannot be discarded out of hand. Firstly, if we

consider the time series of global parameters (e.g., amplitudes) of cycles,

homogeneity may indeed be assumed fairly safely. This approach has rarely been

used for the directly observed solar cycles as their number is probably too low for

meaningful inferences—but the long data sets from cosmogenic radionuclides are

excellent candidates for time series analysis.

In addition, there may be good reasons to consider the option of homogeneity of

solar activity data even on the scale of the solar cycle. Indeed, in dynamo models the

solar magnetic field simply oscillates between (weak) poloidal and (strong) toroidal

configuration: there is nothing inherently special about either of the two, i.e., there is

no a priori reason to attribute a special significance to solar minimum. While at first

glance the butterfly diagram suggests that starting a new cycle at the minimum is the

only meaningful way to do it, there may be equally good arguments for starting a

new cycle at the time of polar reversal. And even though SFT and dynamo models

strongly suggest that spatial information regarding, e.g., the latitudinal distributions

of sunspots may well be essential for cycle prediction, some studies point to a

possibility to reconstruct this spatial information from time series alone (Jiang et al.

2011a; Mandal et al. 2017). There is, therefore, plenty of motivation to try and

apply standard methods of time series analysis to sunspot data.

Indeed, as the sunspot number series is a uniquely homogeneous and long data

set, collected over centuries and generated in what has long been perceived to be a
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fairly carefully controlled manner, it has become a favorite testbed of time series

analysis methods and is routinely used in textbooks and monographs for illustration

purposes (Udny Yule 1927; Box and Jenkins 2008; Wei 2005; Tong 1993). This

section will summarize the various approaches, proceeding, by and large, from the

simplest towards the most complex.

4.1 Linear regression

Linear (auto)regression means representing the value of a time series at time t by a

linear combination of values at times t � Dt, t � 2Dt; . . .; t � pDt. Admitting some

random error �n, the value of R in point n is

Rn ¼ R0 þ
Xp

i¼1

cn�iRn�i þ �n;

where p is the order of the autoregression and the ci’s are weight parameters. A

further twist on the model admits a propagation of errors from the previous q points:

Rn ¼ R0 þ
Xp

i¼1

cn�iRn�i þ �n þ
Xq

i¼1

dn�i�n�i:

This is known as the ARMA (AutoRegressive Moving Average) model.

Linear regression techniques have been widely used for solar activity prediction

during the course of an ongoing cycle. Their application for cycle-to-cycle

prediction has been less common and successful (Lomb and Andersen 1980;

Box and Jenkins 2008; Wei 2005).

Brajša et al. (2009) applied an ARMA model to the series of annual values of R.
A successful fit was found for p ¼ 6, q ¼ 6. Using this fit, the next solar maximum

was predicted to take place around 2012.0 with an amplitude 90� 27, and the

following minimum occurring in 2017.

Instead of applying an autoregression model directly to SSN data, Hiremath

(2008) applied it to a forced and damped harmonic oscillator model claimed to well

represent the SSN series. This resulted in a predicted amplitude of 110� 10 for

Solar Cycle 24, with the cycle starting in mid-2008 and lasting 9.34 years.

4.2 Spectral methods

...the use of any mathematical algorithm to derive hidden periodicities from

the data always entails the question as to whether the resulting cycles are not

introduced either by the particular numerical method used or by the time

interval analyzed.

(de Meyer 1981)

Spectral analysis of the sunspot number record is used for prediction under the

assumption that the main reason of variability in the solar cycle is a long-term

modulation due to one or more periods.
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The usual approach to the problem is the purely formal one of representing the

sunspot record with the superposition of eigenfunctions forming an orthogonal

basis. From a technical point of view, spectral methods are a complicated form of

linear regression. The analysis can be performed by any of the widely used means of

harmonic analysis:

1. Least squares (LS) frequency analysis (sometimes called ‘‘Lomb–Scargle

periodogram’’) consists in finding by trial and error the best fitting sine curve to

the data using the least squares method, subtracting it (‘‘prewhitening’’), then

repeating the procedure until the residuals become indistinguishable from white

noise. The first serious attempt at sunspot cycle prediction, due to Kimura

(1913), belonged to this group. The analysis resulted in a large number of peaks

with dubious physical significance. The prediction given for the upcoming

Cycle 15 failed, the forecasted amplitude being � 60 while the cycle actually

peaked at 105 (SSN v1 values). However, it is interesting to note that Kimura

correctly predicted the long term strengthening of solar activity during the first

half of the twentieth century! LS frequency analysis on sunspot data was also

performed by Lomb and Andersen (1980), with similar results for the spectrum.

2. Fourier analysis is probably the most commonly used method of spectral

decomposition in science. It has been applied to sunspot data from the

beginning of the twentieth century (Turner 1913c, b; Michelson 1913). Vitinsky

(1973) judges Fourier-based forecasts even less reliable than LS periodogram

methods. Indeed, for instance Cole (1973) predicted Cycle 21 to have a peak

amplitude of 60, while the real value proved to be nearly twice that.

3. The maximum entropy method (MEM) relies on the Wiener–Khinchin theorem

that the power spectrum is the Fourier transform of the autocorrelation function.

Calculating the autocorrelation of a time series for M � N points and

extrapolating it further in time in a particular way to ensure maximal entropy

can yield a spectrum that extends to arbitrarily low frequencies despite the

shortness of the data segment considered, and also has the property of being

able to reproduce sharp spectral features (if such are present in the data in the

first place). A good description of the method is given by Ables (1974),

accompanied with some propaganda for it—see Press et al. (1992) for a more

balanced account of its pros and cons. The use of MEM for sunspot number

prediction was pioneered by Currie (1973). Using maximum entropy method

combined with multiple regression analysis (MRA) to estimate the amplitudes

and phases, Kane (2007) arrived at a prediction of 80 to 101 for the maximum

amplitude of Cycle 24 (v1 values). It should be noted that the same method

yielded a prediction (Kane 1999) for Cycle 23 that was far off the mark.

4. Singular spectrum analysis (SSA) is a relatively novel method for the orthogonal

decomposition of a time series. While in the methods discussed above the base

was fixed (the trigonometric functions), SSA allows for the identification of a

set of othogonal eigenfunctions that are most suitable for the problem. This is

done by a principal component analysis of the covariance matrix rik ¼ hRiRiþki.
SSA was first applied to the sunspot record by Rangarajan (1998) who only used

this method for pre-filtering before the application of MEM. Loskutov et al.
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(2001) who also give a good description of the method, already made a

prediction for Cycle 24: a peak amplitude of 117 (v1 value).The forecast was

later corrected slightly downwards to 106 (Kuzanyan et al. 2008).

The dismal performance of spectral predictions with the methods (1)–(3) indicates

that the sunpot number series cannot be well represented by the superposition of a

limited number of fixed periodic components. Instead,

• the periods may be time dependent,

• the system may be quasiperiodic, with a significant finite width of the periodic

peaks (esp. the 11-year peak),

• there may be non-periodic (i.e., chaotic or stochastic) components in the

behaviour of the system, manifested as a continuous background in the spectrum.

In practice, all three effects suggested above may play some part. The first

mentioned effect, time dependence, may in fact be studied within the framework of

spectral analysis. MEM and SSA are intrinsically capable of detecting or

representing time dependence in the spectrum, while LS and Fourier analysis can

study time dependence by sliding an appropriate data window across the period

covered by observations. If the window is Gaussian with a width proportional to the

frequency we arrive at the popular wavelet analysis. This method was applied to the

sunspot number series by Ochadlick et al. (1993), Vigouroux and Delachie (1994),

Frick et al. (1997), Fligge et al. (1999), and Li et al. (2005) who could confirm the

existence and slight variation of the 11-year cycle and the Gleissberg-cycle.

Recently, Kolláth and Oláh (2009) called attention to a variety of other generalized

time dependent spectral analysis methods, of which the pseudo-Wigner transform

yields especially clear details (see Fig. 15). The time varying character of the basic

periods makes it difficult to use these results for prediction purposes but they are

able to shed some light on the variation as well as the presistent or intermittent

nature of the periods determining solar activity.

In summary, it is fair to say that forecasts based on harmonic analysis are

notoriously unreliable. The secular variation of the basic periods, obeying as yet

unknown rules, would render harmonic analysis practically useless for the

prediction of solar cycles even if solar activity could indeed be described by a

superposition of periodic functions. Although they may be potentially useful for

very long term prediction (on centennial scales)19, when it comes to cycle-to-cycle

forecasts the best we can hope from spectral studies is apparently an indirect

contribution, by constraining dynamo models with the inambiguously detected

periodicities.

In what remains from this subsection, we briefly review what these apparently

physically real periods are and what impact they may have on solar cycle prediction.

19 But even here care is needed not to read more into the data than they contain, as discussed by Usoskin

(2018).
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4.2.1 The 11-year cycle and its harmonics

As an example of the period spectrum obtained by these methods, in Fig. 14 we

present the FFT based power spectrum estimate of the smoothed sunspot number

record. Three main features are immediately noticed:

• The dominant 11-year peak, with its sidelobes and its 5.5-year harmonic.

• The 22-year subharmonic, representing the even–odd rule.

• The significant power present at periods longer than 50 years, associated with

the Gleissberg cycle.

The dominant peak in the power spectrum is at � 11 years. Significant power is

also present at the first harmonic of this period, at 5.5 years. This is hardly

surprising as the sunspot number cycles, as presented in Fig. 3, have a markedly

asymmetrical profile. It is a characteristic of Fourier decomposition that in any

periodic series of cycles where the profiles of individual cycles are non-sinusoidal,

all harmonics of the base period will appear in the spectrum.

Indeed, were it not for the 13-month smoothing, higher harmonics could also be

expected to appear in the power spectrum. It has been proposed (Krivova and

Solanki 2002) that these harmonics are detected in the sunspot record and that they

may be related to the periodicities of � 1.3 years intermittently observed in solar

wind speed (Richardson et al. 1994; Paularena et al. 1995; Szabo et al. 1995;

Mursula and Zieger 2000; Lockwood 2001) and in the internal rotation velocity of

the Sun (Howe 2009, Sect. 10.1). An analoguous intermittent 2.5 year variation in

the solar neutrino flux (Shirai 2004) may also belong to this group of phenomena. It

may be worth noting that, from the other end of the period spectrum, the 154-day

Rieger period in solar flare occurrence (Rieger et al. 1984; Bai and Cliver 1990) has

also been tentatively linked to the 1.3-year periodicity. Unusually strong excitation

of such high harmonics of the Schwabe cycle may possibly be explained by

excitation due to unstable Rossby waves in the tachocline (Zaqarashvili et al. 2010).

The 11-year peak in the power spectrum has substantial width, related to the

rather wide variation in cycle lengths in the range 9–13 years. Yet Fig. 14 seems to

suggest the presence of a well detached second peak in the spectrum at a period of

Fig. 14 Power spectrum of the smoothed monthly sunspot number series for the period 1749–2008. Solid
vertical bars mark the 11-year period, its first harmonic and subharmonic; dashed vertical bars are drawn
at a fiducial period of 14.5 years, its harmonic and subharmonic
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� 14 years. The presence of a distinct peak at the first harmonic and even at the

subharmonic of this period seems to support its reality. Indeed, peaks at around 14

and 7 years were already found by other researchers (e.g., Kimura 1913; Currie

1973) who suggested that these may be real secondary periods of sunspot activity.

The situation is, however, more prosaic. Constraining the time interval

considered to data more recent than 1850, from which time the sunspot number

series is considered to be more reliable, the 14.5-year secondary peak and its

harmonics completely disappear. On the other hand, the power spectrum for the

years 1783–1835 indicates that the appearance of the 14.5-year secondary peak in

the complete series is almost entirely due to the strong predominance of this period

(and its harmonic) in that interval. This interval covers the unusually long Cycle 4

and the Dalton minimum, consisting of three consecutive unusually weak cycles,

when the ‘‘normal’’ 11-year mode of operation was completely suppressed.

As pointed out by Petrovay (2010a), this probably does not imply that the Sun

was operating in a different mode during the Dalton minimum, the cycle length

being 14.5 years instead of the usual 11 years. Instead, the effect may be explained

by the well known inverse correlation between cycle length and amplitude, which in

turn is the consequence of the strong inverse correlation between rise rate and cycle

amplitude (Waldmeier effect), combined with a much weaker or nonexistent

correlation between decay rate and amplitude (see Sect. 1.4.3). The cycles around

the Dalton minimum, then, seem to lie at the low amplitude (or long period) end of a

Fig. 15 Pseudo-Wigner power distribution in the sunspot number record, with time on the abscissa and
frequency on the ordinate. The three horizontal bands of high power correspond, from bottom to top, to
the Gleissberg cycle, the 11-year cycle and its first harmonic. The sunspot number curve is shown on top
for guidance (figure courtesy of Z. Kolláth)

123

Solar cycle prediction Page 65 of 93 2



continuum representing the well known cycle length–amplitude relation, ultimately

explained by the Waldmeier effect.

A major consequence of this is that the detailed distribution of peaks varies

significantly depending on the interval of time considered. Indeed, Kolláth and Oláh

(2009) recently applied time dependent harmonic analysis to the sunspot number

series and found that the dominant periods have shown systematic secular changes

during the past 300 years (Fig. 15). For instance, the basic period seems to have

shortened from 11 years to 10 years between 1850 and 1950, with some moderate

increase in the last 50 years. (This is consistent with the known anticorrelation

between cycle length and amplitude, cf. Sect. 1.4.3.)

4.2.2 The even–odd (a.k.a. Gnevyshev–Ohl) rule

A cursory look at Fig. 3 shows that solar cycles often follow an alternating pattern

of higher and lower maxima. In this apparent pattern, already noticed by the early

observers (e.g, Turner 1913a), odd cycles have been typically stronger than even

cycles in the last two centuries.

This even–odd rule can be given two interpretations: a ‘‘weak’’ one of a general

tendency of alternation between even and odd cycles in amplitude, or a ‘‘strong’’

one of a specific numerical relation between the amplitudes of consecutive cycles.

Let us first consider the rule in its weak interpretation. At first sight the rule

admits many exceptions, but the amplitude of solar cycles depends on the particular

measuring method used. Exceptions from the even–odd alternation rule become less

common if a long term trend (calculated by applying a 12221 or 121 filter, see

Sect. 1.4.1) is subtracted from the data (Charbonneau 2001), or if integrated cycle

amplitudes (sums of annual mean sunspot numbers during the cycle) are used

(Gnevyshev and Ohl 1948).

In fact, as evident from, e.g., the work of Mursula et al. (2001) where cycle

amplitudes are based on group sunspot numbers and the amplitude of a cycle is

defined as the sum of the annual GSN value over the course of the cycle, the odd–

even alternation may be considered as strictly valid with only four exceptions:

• In the pairs 7–8 and 17–18, odd cycles are followed by stronger even cycles at

the end of Dalton minimum and at the beginning of the Modern Maximum.

These exceptions could be made to disappear by the subtraction of the long term

trend as suggested by Charbonneau (2001).

• The pair 22–23 represents another apparent break of the weak even–odd rule

which is not easily explained away, even though the relative difference is

smaller if the Kislovodsk sunspot number series is used (Nagovitsyn et al. 2009).

The possibility is obviously there that the subtraction of the long term trend may

resolve the problem but we have no way to tell in the near future.

• Prior to Cycle 5, the phase of the alternation was opposite, even cycles being

stronger than odd cycles. As Cycle 4 is known to have been anomalously long

anyway (the so-called ‘‘phase catastrophe’’ in the solar cycle, Vitinsky et al.

1986) and its decaying phase is not well covered by observations (Vaquero

2007), this gave rise to the suggestion of a ‘‘lost solar cycle’’ between cycles 4
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and 5 (Usoskin et al. 2001). This cycle, however, would have been even more

anomalous than cycle 4 and despite intensive searches in historic data the

evidence is still not quite conclusive (Krivova et al. 2002; see, however, Usoskin

et al. 2009a).

The issue whether the even–odd rule can go through phase jumps or not is important

with respect to its possible origin. One plausible possibility is that the alternation is

due to the superposition of a steady primordial magnetic field component on the

oscillatory magnetic field generated by the dynamo (Levy and Boyer 1982). In this

case, any phase jump in the Gnevyshev–Ohl rule should imply a phase jump in

Hale’s polarity rules, too. Alternatively, persistent even–odd alternation may also

arise in nonlinear dynamos as a period–2 limit cycle (Durney 2000); with a

stochastic forcing occasional phase jumps are also possible (Charbonneau 2001;

Charbonneau et al. 2007).

While we have no information on this from the eighteenth century phase jump,

we can be certain that there was no such phase jump in polarities in the last two

decades, even though the even–odd rule seems to have been broken again. It will be

interesting to see when (and if) the even–odd rule settles in again, whether it will

have done so with a phase jump or not. For instance, if Cycle 25 will again exceed

Cycle 24 it would seem that no phase jump occurred and both theoretical options

are still open. But if Cycle 25 will represent a further weakening from Cycle 24,

followed by a stronger Cycle 26, a phase jump will have occurred, which may

exclude the primordial field origin of the rule if Hale’s polarity rules remain

unchanged.

Let us now discuss the stronger interpretation of the even–odd rule. In the first

quantitative study of the relative amplitudes of consecutive cycles, Gnevyshev and

Ohl (1948) found a rather tight correlation between the time integrated amplitudes

of even and subsequent odd cycles, while the correlation between odd cycles and

subsequent even cycles was found to be much less strong. This gave rise to the

notion that solar cycles come in ‘‘two-packs’’ as even–odd pairs. Nagovitsyn et al.

(2009) confirmed this puzzling finding on the basis of data covering the whole

period of telescopic observations (and renumbering cycles before 1790 in

accordance with the lost cycle hypothesis); they also argue that cycle pair 22–23

does not deviate strongly from the even–odd correlation curve so it should not be

considered a ‘‘real’’ exception to the even–odd rule. Javaraiah (2012) analyzed the

validity of the rule considering large and small sunspot groups separately, and found

that while for large groups the rule holds with a few exceptions, for small groups a

‘reverse G-O rule’ holds where odd numbered cycles are consistently stronger than

the preceding, rather than the following even numbered cycle.

Shortly after its formulation by Gnevyshev and Ohl (1948), the (strong) even–

odd rule was used by Kopecký (1950) to successfully predict the unusually strong

Cycle 19. This made this rule quite popular for forecast purposes. However,

forecasts based on the even–odd rule completely failed for Cycle 23, overpredicting

the amplitude by[ 50% (see review by Li et al. 2001). Taken together with the

implausibility of the suggested two-pack system, this shows that it is probably wiser

123

Solar cycle prediction Page 67 of 93 2



to take the position that ‘‘extraordinary claims need extraordinary evidence’’—

which is yet to be provided in the case of the ‘‘strong’’ even–odd rule.

Finally, in the context of the even–odd rule, it is also worth mentioning the three-

cycle regularity proposed by Ahluwalia (1998). Even though the evidence presented

for the alleged triadic pattern is not overwhelming, this method resulted in one of

the few successful predictions for the amplitude of Cycle 23.

4.2.3 The Gleissberg cycle

Besides the changes in the length of the 11-year cycle related to the amplitude–cycle

length correlation, even more significant are the variations in the period of the so-

called Gleissberg cycle (Gleissberg 1939). This ‘‘cycle’’, corresponding to the

60–120 year ‘‘plateau’’ in Fig. 14 was actually first noticed by Wolf, who placed it

in the range 55–80 years (see Richard 2004 for a discussion of the history of the

studies of the Gleissberg cycle). Researchers in the middle of the twentieth century

characterized it as an 80–100 year variation. Figure 15 explains why so widely

differing periods were found in different studies: the period has in fact shown a

secular increase in the past 300 years, from about 50 years in the early eighteenth

century, to a current value exceeding 140 years. This increased length of the

Gleissberg cycle also agrees with the results of Forgács-Dajka and Borkovits

(2007).

The detection of � 100 year periods in a data set of 300 years is of course

always questionable, especially if the period is even claimed to be varying.

However, the very clear and, most importantly, nearly linear secular trend seen in

Fig. 15 argues convincingly for the reality of the period in question. This clear

appearance of the period is due to the carefully optimized choice of the kernel

function in the time–frequency analysis, a method resulting in a so-called pseudo-

Wigner distribution (PWD). In addition, in their study Kolláth and Oláh (2009)

presented a conscientious test of the reliability of their methods, effectively proving

that the most salient features in their PWD are not artefacts. (The method was

subsequently also applied to stellar activity, Oláh et al. 2009.) This is the most

compelling evidence for the reality of the Gleissberg cycle since 1750 yet presented.

Further evidence was more recently presented by Le Mouël et al. (2017) using

singular spectrum analysis.

4.2.4 Supersecular cycles

For the 210-year Suess (known also as de Vries) cycle, McCracken and Beer (2008)

presented further evidence for the temporally intermittent nature of this marked

peak in the spectrum of solar proxies. The Suess cycle seems to have a role in

regulating the recurrence rate of grand minima. Grand minima, in turn, only seem to

occur during \1 kiloyear intervals (‘‘Spörer events’’) around the minima of the

� 2400-year Hallstatt cycle.

For further discussion of long term variations in solar activity we refer the reader

to the reviews by Beer et al. (2006) and Usoskin (2017).
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4.3 Nonlinear methods

...every complicated question has a simple answer which is wrong. Analyzing

a time series with a nonlinear approach is definitely a complicated problem.

Simple answers have been repeatedly offered in the literature, quoting

numerical values for attractor dimensions for any conceivable system.

(Hegger et al. 1999)

The nonlinearities in the dynamo equations readily give rise to chaotic behaviour of

the solutions. The long term behaviour of solar activity, with phenomena like grand

minima and grand maxima, is also suggestive of a chaotic system. While chaotic

systems are inherently unpredictable on long enough time scales, their deterministic

nature does admit forecast within a limited range. It is therefore natural to explore

this possibility from the point of view of solar cycle prediction.

4.3.1 Attractor analysis and phase space reconstruction: the pros ...

Assuming that the previous ðM � 1Þ values of the sunspot number do in some way

determine the current expected value, our problem becomes restricted to an M-

dimensional phase space, the dimensions being the current value and the ðM � 1Þ
previous values. With a time series of length N, we have N � M þ 1 points fixed in

the phase space, consecutive points being connected by a line. This phase space

trajectory is a sampling of the attractor of the physical system underlying the solar

cycle (with some random noise added to it). The attractor represents a mapping in

phase space which maps each point into the one the system occupies in the next time

step: if this mapping is known to a good degree of precision, it can be used to extend

the trajectory towards the future.

For the mapping to be known, M needs to be high enough to avoid self-crossings

in the phase space trajectory (otherwise the mapping is not unique) but low enough

so that the trajectory still yields a good sampling of the attractor. The lowest integer

dimension satisfying these conditions is the embedding dimension D of the attractor

(which may have a fractal dimension itself).

Once the attractor has been identified, its mathematical description may be done

in three ways.

1. Parametric fitting of the attractor mapping in phase space. The simplest method

is the piecewise linear fit suggested by Farmer and Sidorowich (1987) and

applied in several solar prediction attempts, e.g., Kurths and Ruzmaikin (1990).

Using a method belonging to this group, Kilcik et al. (2009) gave a correct

prediction for Cycle 24. Alternatively, a global nonlinear fit can also be used:

this is the method applied by Serre and Nesme-Ribes (2000) as the first step in

their global flow reconstruction (GFR) approach.

2. Nonparametric fitting. The simplest nonparametric fit is to find the closest

known attractor point to ours (in the ðM � 1Þ-dimensional subspace excluding

the last value) and then using this for a prediction, as done by Jensen (1993).

(This resulted in so large random forecast errors that it is practically
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unsuitable for prediction.) A more refined approach is simplex projection
analysis, recently applied by Singh and Bhargawa (2017) for the problem of

solar cycle prediction. (See also Sarp et al. 2018.) A most remarkable extension

of these methods was presented by Covas (2017) who, instead of focusing on

the time series of SSN only, considered the problem of extending the whole

spatiotemporal data set of sunspot positions (butterfly diagram) into the future.

Neural networks, discussed in more detail in Sect. 4.3.4 below, are a much more

sophisticated nonparametric fitting device. (3) Indirectly, one may try to find a

set of differential equations describing a system that gives rise to an attractor

with properties similar to the observed. In this case there is no guarantee that the

derived equations will be unique, as an alternative, completely different set may

also give rise to a very similar attractor. This arbitrariness of the choice is not

necessarily a problem from the point of view of prediction as it is only the

mapping (the attractor structure) that matters. Such phase space reconstruction

by a set of governing equations was performed, e.g., by Serre and Nesme-Ribes

(2000) or Aguirre et al. (2008). On the other hand, instead of putting up with

any arbitrary set of equations correctly reproducing the phase space, one might

make an effort to find a set with a structure reasonably similar to the dynamo

equations so they can be given a meaningful physical interpretation. Methods

following this latter approach were discussed in Sects. 3.5 and 3.6.

4.3.2 ...the cons ...

Finding the embedding dimension and the attractor structure is not a trivial task, as

shown by the widely diverging results different researchers arrived at. One way to

find the correct embedding dimension is the false nearest neighbours method

(Kennel et al. 1992), essentially designed to identify self-crossings in the phase

space trajectory, in which case the dimension M needs to be increased. But self-

crossings are to some extent inevitable, due to the stochastic component

superimposed on the deterministic skeleton of the system.

As a result, the determination of the minimal necessary embedding dimension is

usually done indirectly. One indirect method fairly popular in the solar community

is the approach proposed by Sugihara and May (1990) where the correct dimension

is basically figured out on the basis of how successfully the model, fit to the first part

of the data set, can ‘‘predict’’ the second part (using a piecewise linear mapping).

Another widely used approach, due to Grassberger and Procaccia (1983), starts

by determining the correlation dimension of the attractor, by simply counting how

the number of neighbours in an embedding space of dimension M  1 increases

with the distance from a point. If the attractor is a lower dimensional manifold in the

embedding space and it is sufficiently densely sampled by our data then the

logarithmic steepness d of this function should be constant over a considerable

stretch of the curve: this is the correlation dimension d. Now, we can increase

M gradually and see at what value d saturates: that value determines the attractor

dimension, while the value of M where saturation is reached yields the embedding

dimension.
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The first nonlinear time series studies of solar activity indicators suggested a time

series spacing of 2–5 years, an attractor dimension � 2–3 and an embedding

dimension of 3–4 (Kurths and Ruzmaikin 1990; Gizzatullina et al. 1990). Other

researchers, however, were unable to confirm these results, either reporting very

different values or not finding any evidence for a low dimensional attractor at all

(Calvo et al. 1995; Price et al. 1992; Carbonell et al. 1994; Kilcik et al. 2009;

Hanslmeier and Brajša 2010). In particular, I would like to call attention to the paper

by Jensen (1993), which, according to ADS and WoS, has received a grand total of

zero citations up to 2010, yet it displays an exemplary no-nonsense approach to the

problem of sunspot number prediction by nonlinear time series methods. Unlike so

many other researchers, the author of that paper does not enforce a linear fit on the

logarithmic correlation integral curve (his Fig. 4); instead, he demonstrates on a

simple example that the actual curve can be perfectly well reproduced by a simple

stochastic process.

These contradictory results obviously do not imply that the mechanism

generating solar activity is not chaotic. For a reliable determination a long time

series is desirable to ensure a sufficiently large number of neighbours in a phase

space volume small enough compared to the global scale of the attractor. Solar data

sets (even the cosmogenic radionuclide proxies extending over millennia but

providing only a decadal sampling) are typically too short and sparse for this. In

addition, clearly distinguishing between the phase space fingerprints of chaotic and

stochastic processes is an unsolved problem of nonlinear dynamics which is not

unique to solar physics. A number of methods have been suggested to identify chaos

unambiguously in a time series but none of them has been generally accepted and

this topic is currently a subject of ongoing research—see, e.g., the work of Freitas

et al. (2009) which demonstrates that the method of ‘‘noise titration’’, somewhat

akin to the Sugihara–May algorithm, is uncapable of distinguishing superimposed

coloured noise from intrinsically chaotic systems.

4.3.3 ...and the upshot

Starting from the 1980s, many researchers jumped on the chaos bandwagon,

applying nonlinear time series methods designed for the study of chaotic systems to

a wide variety of empirical data, including solar activity parameters. From the

1990s, however, especially after the publication of the influential book by Kantz and

Schreiber (1997), it was increasingly realized that the applicability of these

nonlinear algorithms does not in itself prove the predominantly chaotic nature of the

system considered. In particular, stochastic noise superposed on a simple, regular,

deterministic skeleton can also give rise to phase space characteristics that are hard

to tell from low dimensional chaos, especially if strong smoothing is applied to the

data. As a result, the pendulum has swung in the opposite direction and currently the

prevailing view is that there is no clear cut evidence for chaos in solar activity data

(Panchev and Tsekov 2007).

One might take the position that any forecast based on attractor analysis is only

as good as the underlying assumption of a chaotic system is: if that assumption is

unverifiable from the data, prediction attempts are pointless. This, however, is
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probably a too hasty judgment. The potentially most useful product of phase space

reconstruction attempts is the inferences they allow regarding the nature of the

underlying physical system (chaotic or not), even offering a chance to constrain the

form of the dynamo equations relevant for the Sun. As discussed in the previous

section, such truncated models may be used for forecast directly, or alternatively,

the insight they yield into the mechanisms of the dynamo may be used to construct

more sophisticated dynamo models.

4.3.4 Neural networks

Neural networks are algorithms built up from a large number of small intercon-

nected units (‘‘neurons’’ or ‘‘threshold logic units’’), each of which is only capable

of performing a simple nonlinear operation on an input signal, essentially described

by a step function or its generalized (rounded) version, a sigmoid function. To

identify the optimal values of thresholds and weights parameterizing the sigmoid

functions of each neuron, an algorithm called ‘‘back propagation rule’’ is employed

which minimizes (with or without human guidance) the error between the predicted

and observed values in a process called ‘‘training’’ of the network. Once the network

has been correctly trained, it is capable of further predictions.

The point is that any arbitrary multidimensional nonlinear mapping may be

approximated by a combination of stepfunctions to a good degree—so, as

mentioned in Sect. 4.3.1 above, the neural network can be used to find the

nonlinear mapping corresponding to the attractor of the given time series.

More detailed introductions to the method are given by Blais and Mertz (2001),

Conway (1998), and by Calvo et al. (1995); the latter authors were also the first to

apply a neural network for sunspot number prediction. Unfortunately, despite their

claim of being able to ‘‘predict’’ (i.e., postdict) some earlier cycles correctly, their

prediction for Cycle 23 was off by a wide margin (predicted peak amplitude of 166

[v1] as opposed to 121 observed). One of the neural network forecasts for Cycle 24

(Maris and Oncica 2006) was equally far off, while another one (Uwamahoro et al.

2009) yielded a more conservative value. A prediction for Cycle 25 based on a

version of the neural networks approach was given by Attia et al. (2013), resulting

in a cycle amplitude slightly below that of cycle 24.

5 Summary evaluation

The performance of various forecast methods in Cycles 21–23 was discussed by Li

et al. (2001) and Kane (2001). Predictions for Cycle 24 were presented in Petrovay

(2010b) (Table 1), Pesnell (2008) and Pesnell (2012); the experiences gained in this

cycle were discussed in Pesnell (2016).

Precursor methods generally stand out with their internally consistent forecasts

which for Cycles 21 and 22 proved to be correct. For Cycle 23, these methods were

still internally consistent in their prediction, mostly scattering in a narrow range
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between20 150 and 170; however, the cycle amplitude proved to be considerably

lower (Rmax ¼ 121). It should be noted, however, that one precursor based

prediction, that of Schatten et al. (1996) was significantly lower than the rest

(138� 30) and within 0:6 r of the actual value. For Cycle 24 most precursor

methods again consistently indicated a lower-than-average cycle amplitude in the

range 70–100, except Feynman’s geomagnetic precursor method which mistakenly

resulted in a very high value of 150. (The likely reasons were discussed in Sect. 2.4

above.) The closest hit at the actual peak value of 67 [v1] or 116 [v2] was produced

by the Minimax3 and the polar field precursor methods (Petrovay 2010b; Svalgaard

et al. 2005). Indeed, the polar precursor method of Schatten and Sofia (1987) and

Schatten et al. (1996), has consistently proven its skill in all cycles. As discussed in

Sect. 2.3, this method is essentially based on the polar magnetic field strength as

precursor.

Model based methods are a new development that have only had limited occasion

to prove their skill. For Cycle 24 only three conceptually different such predictions

were made, all of which were based on dynamo models. The pioneering attempt by

Dikpati and Gilman (2006) proved to be way too high (see Sect. 3.4.1 for a

discussion of the possible reasons). The flux transport dynamo based predictions of

Choudhuri et al. (2007) and Jiang et al. (2007) were close hits; however, as already

mentioned, these employed a technique (adjusting the dipole moment at the

minimum to observations) which renders them essentially a polar field precursor

method in disguise. Another correct model-based forecast was given by Kitiashvili

and Kosovichev (2008); the good performance of this dynamo model, seemingly

rather far removed from physical reality, still needs to be understood and it may

possibly be equivalent to a phase space reconstruction method, as in item (3) of

Sect. 4.3.1.

Extrapolation methods as a whole have shown a much less impressive

performance. Overall, the statistical distribution of maximum amplitude values

predicted by ‘‘real’’ forecasts made using these methods (i.e., forecasts made at or

before the minimum epoch) for any given cycle does not seem to significantly differ

from the long term climatological average of the solar cycle quoted in Sect. 1.4

above. It would of course be a hasty judgement to dismiss each of the widely

differing individual approaches comprised in this class simply due to the poor

overall performance of the group. In particular, some novel methods introduced in

the last decades, such as SSA, phase space reconstruction or neural networks have

hardly had a chance to debut, so their further performance will be worth monitoring

in upcoming cycles.

The effect of the sunspot number revision on solar cycle prediction methods is

limited to numerical corrections of minor importance.

20 Version 1 sunspot numbers are used throughout this section, unless otherwise indicated.
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6 Forecasts for Cycle 25

Table 2 presents a collection of forecasts for the amplitude of Cycle 25, without

claiming completeness. The objective was to include one or two representative

forecasts from each category. As the time of the minimum starting Cycle 25 is yet to

be established, all these forecast qualify as ‘‘early’’, in the sense that the most well-

established methods, relying on precursor values evaluated at the time of minimum,

cannot yet be applied.

It is clear also from this table that the issue of cycle prediction is less contentious

for Cycle 25 than it was for Cycle 24. The overwhelming majority of forecasts

Table 2 A selection of early forecasts for Cycle 25

Category Minimum Maximum Peak

amplitude

References

Internal precursors 2019.9 2023.8 175

(154–202)

Li et al. (2015)

External precursor

Polar precursor 117� 15 Table 1 here

Polar precursor 136� 48 Pesnell and Schatten (2018)

Helicity 117 Hawkes and Berger (2018)

SoDA 2025:2� 1:5 120� 39 Based on Pesnell and

Schatten (2018)

Rush-to-the-poles 2019.4 2024.8 130 Petrovay et al. (2018)

Model-based: SFT

SFT 124� 31 Jiang et al. (2018)

AFT 2020.9 110 Upton and Hathaway (2018)

Model-based: dynamo

2
2D 2020:5� 0:12 2027:2� 1:0 89þ29
�14

Labonville et al. (2019)

Truncated 2019–2020 2024� 1 90� 15 Kitiashvili (2016)

Spectral

Wavelet

decomposition tree

2023.4 132 Rigozo et al. (2011)

Attractor analysis

Simplex projection

analysis

2024:0� 0:6 103� 25 Singh and Bhargawa (2017)

Simplex proj./time-

delay

2023:2� 1:1 154� 12 Sarp et al. (2018)

Neural networks

Neuro-fuzzy 2022 90:7� 8 Attia et al. (2013)

Spatiotemporal 2022–2023 57� 17 Covas et al. (2019)

Cycle 24 (comparison) 2008.9 2014.3 116

In the case of SFT models, forecasts were obtained by multiplying the amplitude of Cycle 24 with the

predicted % increase in polar field strength between the two minima. Errors resulting from a natural

scatter in the polar field–cycle ampliude relation are therefore not included in the error range given
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agree that the amplitude of Cycle 25 is most likely to lie within �20% of Cycle 24,

i.e., no major change in the level of solar activity is expected. The remaining

controversy mostly concerns where in this range the cycle will peak. Dynamo based

predictions indicate that Cycle 25 will peak at somewhat lower values than

Cycle 24, while precursor techniques and SFT modelling suggest a cycle amplitude

comparable to or slightly higher than the previous cycle. Two recent neural network

based forecasts yield a weak cycle peaking quite early.

Following the development of the sunspot number during the next few years will

be most interesting in the light of these predictions, and it may shed more light on

the strong and weak points in our understanding of the roots of solar activity

variations.
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Whitbread T, Yeates AR, Muñoz-Jaramillo A (2018) How many active regions are necessary to predict

the solar dipole moment? Astrophys J 863:116. https://doi.org/10.3847/1538-4357/aad17e. arXiv:

1807.01617

Willamo T, Usoskin IG, Kovaltsov GA (2017) Updated sunspot group number reconstruction for

1749–1996 using the active day fraction method. Astron Astrophys 601:A109. https://doi.org/10.

1051/0004-6361/201629839. arXiv:1705.05109

Willamo T, Usoskin IG, Kovaltsov GA (2018) A test of the active-day fraction method of sunspot group

number calibration: dependence on the level of solar activity. Sol Phys 293:69. https://doi.org/10.

1007/s11207-018-1292-7. arXiv:1803.10501

Wilmot-Smith AL, Nandy D, Hornig G, Martens PCH (2006) A time delay model for solar and stellar

dynamos. Astrophys J 652:696–708. https://doi.org/10.1086/508013

Winch DE, Ivers DJ, Turner JPR, Stening RJ (2005) Geomagnetism and Schmidt quasi-normalization.

Geophys J Int 160:487–504. https://doi.org/10.1111/j.1365-246X.2004.02472.x

Winter LM, Pernak RL, Balasubramaniam KS (2016) Comparing SSN index to X-ray flare and coronal

mass ejection rates from solar cycles 22–24. Sol Phys 291(9–10):3011–3023. https://doi.org/10.

1007/s11207-016-0901-6. arXiv:1605.00503

Wolf R (1850) Mittheilungen über die Sonnenflecken I. Astr Mitt Zürich 1:3–13
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